Exercise on Planck Quantities

Chirag Gokani
PHYS 4352 - Concepts of Modern Physics
University of Texas at Dallas

August 20, 2020

In today's lecture we discussed the importance of three numbers - \hbar, c, and G-and how they determine the relevance of various regimes of physics (e.g., Newtonian mechanics, quantum field theory, etc.) over given scales.

Three fundamental quantities arise: the Planck mass M_{p}, the Planck length l_{p}, and the Planck time t_{p}. I will derive these quantities from considerations of dimensional analysis given the dimensions of \hbar, c, and G (where the dimension of some quantity a is denoted by [a]):

$$
\begin{gathered}
{[\hbar]=\mathrm{J} \mathrm{~s}=\frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{~s}}} \\
{[c]=\frac{\mathrm{m}}{\mathrm{~s}}} \\
{[G]=\frac{\mathrm{m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}}}
\end{gathered}
$$

1 Planck mass M_{p}

Suppose we want $\left[M_{p}\right]=\mathrm{kg}$. Multiplying \hbar and c gives $\frac{\mathrm{kg} \mathrm{m}^{3}}{\mathrm{~s}^{2}}$. Dividing by $[G]$ leaves us with kg^{2}. Taking the square root finally gives the desired kg . This suggests that the Planck mass is given by

$$
M_{p}=\sqrt{\frac{\hbar c}{G}} \approx 5.45 * 10^{-8} \mathrm{~kg}
$$

In the classical approximation of quantum mechanics $(\hbar \rightarrow 0), M_{p} \rightarrow 0$ too (i.e., no notion of "smallest mass"). But in the classical approximation of special relativity ($c \rightarrow \infty$), $M_{p} \rightarrow \infty$. It is interesting that these limiting cases offer divergent approximations of the Planck mass.

2 Planck length l_{p}

Suppose we want $\left[l_{p}\right]=\mathrm{m}$. Multiplying $[\hbar]$ and $[G]$ cancels mass and gives $\frac{\mathrm{m}^{5}}{\mathrm{~s}^{3}}$. Dividing by c^{3} gives dimensions of m^{2}. Taking the square root gives the desired unit of meters. This suggests the Planck length should be

$$
l_{p}=\sqrt{\frac{G \hbar}{c^{3}}} \approx 4.05 * 10^{-35} \mathrm{~m}
$$

In the classical approximation of quantum mechanics $(\hbar \rightarrow 0)$ and special relativity $(c \rightarrow \infty)$, $l_{p} \rightarrow 0$ (i.e., no notion of "smallest length") as expected.

3 Planck time t_{p}

Suppose we want $\left[t_{p}\right]=\mathrm{s}$. Multiplying $[\hbar]$ and $[G]$ cancels mass and gives $\frac{\mathrm{m}^{5}}{\mathrm{~s}^{3}}$. Now dividing by c^{5} gives s^{2}. Taking the square root gives the desired unit of seconds. This suggests the Planck time should be

$$
t_{p}=\sqrt{\frac{\hbar G}{c^{5}}} \approx 1.34 * 10^{-43} \mathrm{~s}
$$

In the classical approximation of quantum mechanics $(\hbar \rightarrow 0), t_{p} \rightarrow 0$. The same limiting case is achieved in the classical approximation of special relativity $(c \rightarrow \infty)$: in both approximations there is no notion of "shortest time."

