Practice problem

Jackson learned calculus in the 9th grade. Because his brain is suffused with advanced mathematics, his head of radius a can be modeled as a pressure-release sphere. Meanwhile, his iconic clear-frame glasses, which sit at $\theta=45^{\circ}$, impose band of rigidity around his head. The boundary conditions for Jackson's head are therefore

$$
p(a, \theta)=\left\{\begin{array}{lc}
0 & \text { for } \theta \neq \pi / 4 \\
p_{0} & \text { for } \theta=\pi / 4
\end{array}\right.
$$

On the other hand, Chirag did not study calculus until the 12th grade. As such, the top half of his head can be modeled be as a hemisphere with a rigid boundary. The bottom half of his head is pressure-release. The boundary conditions for Chirag's head are therefore

$$
p(a, \theta)= \begin{cases}p_{0} & \text { for } 0 \leq \theta \leq \pi / 2 \\ 0 & \text { for } \pi / 2<\theta<\pi\end{cases}
$$

You are given the orthogonality integral

$$
\int_{1}^{-1} P_{n}(z) P_{m}(z) \mathrm{d} z=\frac{2}{2 n+1} \delta_{n m}
$$

as well as the integral

$$
\int_{0}^{\theta_{0}} P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta=\frac{1}{2 m+1}\left(P_{m-1}\left(\cos \theta_{0}\right)-P_{m+1}\left(\cos \theta_{0}\right)\right)
$$

1. Solve the pressure wave equation for Jackson's head.

The Neumann functions are discarded since they diverge at the origin. Also, since there is no dependence on $\psi, m=0$. The general solution is therefore

$$
\begin{equation*}
p(r, \theta, t)=\sum_{n=0}^{\infty} A_{n} j_{n}(k r) P_{n}(\cos \theta) e^{j \omega t} \tag{1}
\end{equation*}
$$

Meanwhile, the boundary condition on Jackson's head can be written using the Dirac delta function as

$$
\begin{equation*}
p(a, \theta)=p_{0} \delta(\theta-\pi / 4) \tag{2}
\end{equation*}
$$

Equating the time-independent part of equation (1) at $r=a$ and equation (2),

$$
\sum_{n=0}^{\infty} A_{n} j_{n}(k a) P_{n}(\cos \theta) e^{j \omega t}=p_{0} \delta(\theta-\pi / 4)
$$

Multiplying both sides by $P_{m}(\cos \theta) \sin \theta$, and integrating from $\theta=0$ to $\theta=\pi$,

$$
\sum_{n=0}^{\infty} A_{n} j_{n}(k a) \int_{0}^{\pi} P_{m}(\cos \theta) P_{n}(\cos \theta) \sin \theta \mathrm{d} \theta=p_{0} \int_{0}^{\pi} P_{m}(\cos \theta) \sin \theta \delta(\theta-\pi / 4) \mathrm{d} \theta
$$

Making the substitution $\cos \theta \mapsto z, \sin \theta \mathrm{~d} \theta \mapsto-\mathrm{d} z$, the orthogonality integral is employed on the left-hand-side (LHS) of (\star) :

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{n} j_{n}(k a) \int_{0}^{\pi} P_{m}(\cos \theta) P_{n}(\cos \theta) \sin \theta \mathrm{d} \theta & =-\sum_{n=0}^{\infty} A_{n} j_{n}(k a) \int_{-1}^{1} P_{m}(z) P_{n}(z) \mathrm{d} z \\
& =\sum_{n=0}^{\infty} \frac{2 A_{n} j_{n}(k r)}{2 n+1} \delta_{n m} \\
& =\frac{2 A_{m} j_{m}(k a)}{2 m+1}
\end{aligned}
$$

(Simplified LHS)
Meanwhile, the right-hand-side (RHS) of (\star) is

$$
\begin{aligned}
p_{0} \int_{0}^{\pi} P_{m}(\cos \theta) \sin \theta \delta(\theta-\pi / 4) \mathrm{d} \theta & =p_{0} P_{m}(\cos (\pi / 4)) \sin (\pi / 4) \\
& =p_{0} \frac{\sqrt{2}}{2} P_{m}(\sqrt{2} / 2) \quad(\text { Simplified RHS })
\end{aligned}
$$

Since m is a dummy index, we revert to the original index n. Equating (Simplified LHS) and (Simplified RHS), and solving for A_{n},

$$
\begin{aligned}
\frac{2 A_{n} j_{n}(k a)}{2 n+1} & =p_{0} \frac{\sqrt{2}}{2} P_{n}(\sqrt{2} / 2) \\
\Longrightarrow A_{n} & =p_{0} \frac{\sqrt{2}}{2} \frac{2 n+1}{2} \frac{P_{n}(\sqrt{2} / 2)}{j_{n}(k a)}
\end{aligned}
$$

The general solution given by equation (1) becomes specific:

$$
p(r, \theta, t)=p_{0} \sum_{n=0}^{\infty} \frac{\sqrt{2}}{2} \frac{2 n+1}{2} \frac{j_{n}(k r)}{j_{n}(k a)} P_{n}(\sqrt{2} / 2) P_{n}(\cos \theta) e^{j \omega t}
$$

2. Solve the pressure wave equation for Chirag's head.

The same considerations as in part (1) lead us to start with the general solution

$$
\begin{equation*}
p(r, \theta, t)=\sum_{n=0}^{\infty} A_{n} j_{n}(k r) P_{n}(\cos \theta) e^{j \omega t} \tag{3}
\end{equation*}
$$

Equating the time-independent part of equation (3) at $r=a$ to the given boundary condition in the problem statement,

$$
\sum_{n=0}^{\infty} A_{n} j_{n}(k a) P_{n}(\cos \theta) e^{j \omega t}=p(a, \theta)= \begin{cases}p_{0} & \text { for } 0 \leq \theta \leq \pi / 2 \\ 0 & \text { for } \pi / 2<\theta<\pi\end{cases}
$$

Multiplying both sides by $P_{m}(\cos \theta) \sin \theta$, and integrating from $\theta=0$ to $\theta=\pi$,

$$
\sum_{n=0}^{\infty} A_{n} j_{n}(k a) \int_{0}^{\pi} P_{m}(\cos \theta) P_{n}(\cos \theta) \sin \theta \mathrm{d} \theta=\int_{0}^{\pi} p(a, \theta) P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta
$$

The integral on the left-hand-side of (\dagger) is identical to that of (\star) in part (1). The result (Simplified LHS) is therefore used. Meanwhile, the integral on the right-hand-side of (\dagger) is written as the sum $\int_{0}^{\pi / 2}+\int_{\pi / 2}^{\pi}$. Equation (\dagger) becomes

$$
\begin{aligned}
\frac{2 A_{m} j_{m}(k a)}{2 m+1} & =\int_{0}^{\pi / 2} p(a, \theta) P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta+\int_{\pi / 2}^{\pi} p(a, \theta) P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\
& =\int_{0}^{\pi / 2} p_{0} * P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta+\int_{\pi / 2}^{\pi} 0 * P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\
& =p_{0} \int_{0}^{\pi / 2} P_{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\
& =\frac{p_{0}}{2 m+1}\left(P_{m-1}(\cos \pi / 2)-P_{m+1}(\cos \pi / 2)\right) \\
& =\frac{p_{0}}{2 m+1}\left(P_{m-1}(0)-P_{m+1}(0)\right)
\end{aligned}
$$

Since m is a dummy index, we revert to the original index n. Solving for A_{n},

$$
\begin{aligned}
2 A_{n} j_{n}(k a) & =p_{0}\left(P_{n-1}(0)-P_{n+1}(0)\right) \\
\Longrightarrow A_{n} & =\frac{1}{2 j_{n}(k a)}\left(P_{n-1}(0)-P_{n+1}(0)\right)
\end{aligned}
$$

The general solution given by equation (3) becomes specific:

$$
p(r, \theta, t)=\frac{p_{0}}{2} \sum_{n=0}^{\infty} \frac{j_{n}(k r)}{j_{n}(k a)}\left(P_{n-1}(0)-P_{n+1}(0)\right) P_{n}(\cos \theta) e^{j \omega t}
$$

