
Radiation from general axisymmetric (m = 0) spher-
ical velocity source1

Let the radius of the spherical source be a. At the boundary of the sphere,
r = a, there is a radially pulsating velocity source given by

ur(a, θ, t) = u0f(θ)ejωt (1)

The source causes outgoing (i.e., throw out h
(1)(kr)
n ) pressure waves, which are

expressed as an expansion of Legendre polynomials:2

p(r, θ, t) =

∞∑
n=0

AnPn(cos θ)hn(kr)ejωt (2)

To write equation (2) in terms of particle velocity, the momentum equation
ρ0

∂u
∂t + ∇p = 0, which for harmonic waves becomes ur(r, θ) = − 1

jωρ0

∂p
∂r , is

applied, giving

ur(r, θ, t) = − 1

jc0ρ0

∞∑
n=0

AnPn(cos θ)h′n(kr)ejωt (3)

where c0 = ω
k .

Expanding the angular distribution function f(θ) in equation (1) in terms of
Legendre polynomials gives

ur(a, θ) = u0e
jωt

∞∑
n=0

UnPn(cos θ) (4)

where the coefficients Un are found using the orthogonality of Legendre polyno-
mials.

Un =
2n+ 1

2

ˆ π

0

f(θ)Pn(cos θ) sin θ dθ (5)

Equating equations (3) at r = a and (4), the Legendre polynomials and the
time dependence cancel:

u0

∞∑
n=0

Un = − 1

jωc0

∞∑
n=0

Anh
′
n(ka)

Since this must hold for each term in the summations on both sides,

u0Un = − 1

jωc0
Anh

′
n(ka)

1From Acoustics II class notes, Dr. Mark F. Hamilton
2The Hankel functions of the second kind, h

(2)
n , will be denoted hn for convenience.



Solving for An,

An = −jρ0c0
Un

h′n(ka)

Then, equation (2) becomes

p(r, θ, t) = −jρ0c0u0ejωt
∞∑
n=0

hn(kr)

h′n(ka)
UnPn(cos θ) (6)

Far field limit: kr →∞
Note that

lim
kr→∞

hn(kr) =
e−jkr

kr
ej(n+1)π/2

Since ejπ/2 = j, ej(n+1)π/2 = jn+1, so equation (6) becomes

p(r, θ, t) = ρ0c0u0
ej(ωt−kr)

kr

∞∑
n=0

jnUn
h′n(ka)

Pn(cos θ) (7)

Note that the angular dependence has been factored out of the radial depen-
dence.

Small source limit in the far field: kr →∞, ka� 1

Continuing in the far field, the small source limit ka� 1 is now evaluated.

First note that ka � 1 =⇒ a � λ, which means that the source is point-like
compared to the wavelength. Therefore, the wavelength is effectively constant
along the circumference of the source. So, higher spatial harmonics are excluded,
i.e., the n = 0 term dominates in this limit for U0 6= 0. Then, equation (5)
becomes

U0 =
1

2

ˆ π

0

f(θ) sin θ dθ

Multiplying the right-hand-side by 1 = 2πa2

2πa2 ,

U0 =
1

4πa2

ˆ π

0

f(θ)2πa2 sin θ dθ

Noting that 2πa2 sin θ dθ is dS, the differential surface area of a sphere at radius
r = a, the above becomes



U0 =
1

S

ˆ
f dS

That is, U0 is just the spatial average of f on the surface of the sphere.

Further, the volume velocity of the source Q0 is

Q0 =

ˆ
u0f(θ) dS

= u0SU0

= 4πa2u0U0

Also note that

lim
ka→0

1

h′n(ka)
=

n!2n

(n+ 1)(2n)!
(j)(ka)n+2

= (j)(ka)2, n = 0

=
1

2
(j)(ka)3, n = 1

= . . .

Combining these two observations of the ka� 1 limit, equation (7) becomes

p(r, t) = ρ0c0u0
ej(ωt−kr)

kr
(j)(ka)2U0

= jωQ0
ρ0e

j(ωt−kr)

4πr
(8)

This is the so-called “equation for a simple simple source.” See page 359, equa-
tion D-7. Note that there is no angular dependence in the far-field for ka � 1
for any source distribution for U0 6= 0.

Large source limit in the far field: kr →∞, ka� 1

Noting that

lim
ka→∞

1

h′n(ka)
= kaej(ka−nπ/2)

= j−nkaejka,

equation (7) becomes



p = ρ0c0u0
a

r
ej(ωt−k(r−a))

∞∑
n=0

UnPn(cos θ)

The sum in the above equation is precisely the expansion of f(θ) in terms of
Legendre polynomials. The above becomes

p = ρ0c0u0f(θ)
a

r
ej(ωt−k(r−a)) (Geometric acoustic limit)

The (Geometric acoustic limit) is a radial projection of f(θ) from a to radius r,
i.e., no diffraction.


