Radiation from general axisymmetric ($m=0$) spherical velocity source ${ }^{\text {¹ }}$

Let the radius of the spherical source be a. At the boundary of the sphere, $r=a$, there is a radially pulsating velocity source given by

$$
\begin{equation*}
u_{r}(a, \theta, t)=u_{0} f(\theta) e^{j \omega t} \tag{1}
\end{equation*}
$$

The source causes outgoing (i.e., throw out $h_{n}^{(1)(k r)}$) pressure waves, which are expressed as an expansion of Legendre polynomials ${ }^{2}$

$$
\begin{equation*}
p(r, \theta, t)=\sum_{n=0}^{\infty} A_{n} P_{n}(\cos \theta) h_{n}(k r) e^{j \omega t} \tag{2}
\end{equation*}
$$

To write equation (2) in terms of particle velocity, the momentum equation $\rho_{0} \frac{\partial \boldsymbol{u}}{\partial t}+\nabla p=0$, which for harmonic waves becomes $u_{r}(r, \theta)=-\frac{1}{j \omega \rho_{0}} \frac{\partial p}{\partial r}$, is applied, giving

$$
\begin{equation*}
u_{r}(r, \theta, t)=-\frac{1}{j c_{0} \rho_{0}} \sum_{n=0}^{\infty} A_{n} P_{n}(\cos \theta) h_{n}^{\prime}(k r) e^{j \omega t} \tag{3}
\end{equation*}
$$

where $c_{0}=\frac{\omega}{k}$.
Expanding the angular distribution function $f(\theta)$ in equation (1) in terms of Legendre polynomials gives

$$
\begin{equation*}
u_{r}(a, \theta)=u_{0} e^{j \omega t} \sum_{n=0}^{\infty} U_{n} P_{n}(\cos \theta) \tag{4}
\end{equation*}
$$

where the coefficients U_{n} are found using the orthogonality of Legendre polynomials.

$$
\begin{equation*}
U_{n}=\frac{2 n+1}{2} \int_{0}^{\pi} f(\theta) P_{n}(\cos \theta) \sin \theta \mathrm{d} \theta \tag{5}
\end{equation*}
$$

Equating equations (3) at $r=a$ and (4), the Legendre polynomials and the time dependence cancel:

$$
u_{0} \sum_{n=0}^{\infty} U_{n}=-\frac{1}{j \omega c_{0}} \sum_{n=0}^{\infty} A_{n} h_{n}^{\prime}(k a)
$$

Since this must hold for each term in the summations on both sides,

$$
u_{0} U_{n}=-\frac{1}{j \omega c_{0}} A_{n} h_{n}^{\prime}(k a)
$$

[^0]Solving for A_{n},

$$
A_{n}=-j \rho_{0} c_{0} \frac{U_{n}}{h_{n}^{\prime}(k a)}
$$

Then, equation (2) becomes

$$
\begin{equation*}
p(r, \theta, t)=-j \rho_{0} c_{0} u_{0} e^{j \omega t} \sum_{n=0}^{\infty} \frac{h_{n}(k r)}{h_{n}^{\prime}(k a)} U_{n} P_{n}(\cos \theta) \tag{6}
\end{equation*}
$$

Far field limit: $k r \rightarrow \infty$
Note that

$$
\lim _{k r \rightarrow \infty} h_{n}(k r)=\frac{e^{-j k r}}{k r} e^{j(n+1) \pi / 2}
$$

Since $e^{j \pi / 2}=j, e^{j(n+1) \pi / 2}=j^{n+1}$, so equation (6) becomes

$$
\begin{equation*}
p(r, \theta, t)=\rho_{0} c_{0} u_{0} \frac{e^{j(\omega t-k r)}}{k r} \sum_{n=0}^{\infty} \frac{j_{n} U_{n}}{h_{n}^{\prime}(k a)} P_{n}(\cos \theta) \tag{7}
\end{equation*}
$$

Note that the angular dependence has been factored out of the radial dependence.

Small source limit in the far field: $k r \rightarrow \infty, k a \ll 1$
Continuing in the far field, the small source limit $k a \ll 1$ is now evaluated.
First note that $k a \ll 1 \Longrightarrow a \ll \lambda$, which means that the source is point-like compared to the wavelength. Therefore, the wavelength is effectively constant along the circumference of the source. So, higher spatial harmonics are excluded, i.e., the $n=0$ term dominates in this limit for $U_{0} \neq 0$. Then, equation (5) becomes

$$
U_{0}=\frac{1}{2} \int_{0}^{\pi} f(\theta) \sin \theta \mathrm{d} \theta
$$

Multiplying the right-hand-side by $1=\frac{2 \pi a^{2}}{2 \pi a^{2}}$,

$$
U_{0}=\frac{1}{4 \pi a^{2}} \int_{0}^{\pi} f(\theta) 2 \pi a^{2} \sin \theta \mathrm{~d} \theta
$$

Noting that $2 \pi a^{2} \sin \theta \mathrm{~d} \theta$ is $\mathrm{d} S$, the differential surface area of a sphere at radius $r=a$, the above becomes

$$
U_{0}=\frac{1}{S} \int f \mathrm{~d} S
$$

That is, U_{0} is just the spatial average of f on the surface of the sphere.
Further, the volume velocity of the source Q_{0} is

$$
\begin{aligned}
Q_{0} & =\int u_{0} f(\theta) \mathrm{d} S \\
& =u_{0} S U_{0} \\
& =4 \pi a^{2} u_{0} U_{0}
\end{aligned}
$$

Also note that

$$
\begin{aligned}
\lim _{k a \rightarrow 0} \frac{1}{h_{n}^{\prime}(k a)} & =\frac{n!2^{n}}{(n+1)(2 n)!}(j)(k a)^{n+2} \\
& =(j)(k a)^{2}, n=0 \\
& =\frac{1}{2}(j)(k a)^{3}, n=1 \\
& =\ldots
\end{aligned}
$$

Combining these two observations of the $k a \ll 1$ limit, equation 77 becomes

$$
\begin{align*}
p(r, t) & =\rho_{0} c_{0} u_{0} \frac{e^{j(\omega t-k r)}}{k r}(j)(k a)^{2} U_{0} \\
& =j \omega Q_{0} \frac{\rho_{0} e^{j(\omega t-k r)}}{4 \pi r} \tag{8}
\end{align*}
$$

This is the so-called "equation for a simple simple source." See page 359, equation D-7. Note that there is no angular dependence in the far-field for $k a \ll 1$ for any source distribution for $U_{0} \neq 0$.

Large source limit in the far field: $k r \rightarrow \infty, k a \gg 1$

Noting that

$$
\begin{aligned}
\lim _{k a \rightarrow \infty} \frac{1}{h_{n}^{\prime}(k a)} & =k a e^{j(k a-n \pi / 2)} \\
& =j^{-n} k a e^{j k a}
\end{aligned}
$$

equation (7) becomes

$$
p=\rho_{0} c_{0} u_{0} \frac{a}{r} e^{j(\omega t-k(r-a))} \sum_{n=0}^{\infty} U_{n} P_{n}(\cos \theta)
$$

The sum in the above equation is precisely the expansion of $f(\theta)$ in terms of Legendre polynomials. The above becomes

$$
p=\rho_{0} c_{0} u_{0} f(\theta) \frac{a}{r} e^{j(\omega t-k(r-a))} \quad \text { (Geometric acoustic limit) }
$$

The (Geometric acoustic limit) is a radial projection of $f(\theta)$ from a to radius r, i.e., no diffraction.

[^0]: ${ }^{1}$ From Acoustics II class notes, Dr. Mark F. Hamilton
 ${ }^{2}$ The Hankel functions of the second kind, $h_{n}^{(2)}$, will be denoted h_{n} for convenience.

