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Derivation of the Virial Theorem1

In this discussion, f is a function of canonical variables (qk, pk), H =
∑
j pj q̇j−L

is the Hamiltonian, and2 [f,H] ≡ ∂f
∂qk

∂H
∂pk
− ∂f

∂pk

∂H
∂qk

= ∂f
∂qk

q̇k − ∂f
∂pk

ṗk (the last

equality by Hamilton’s equations).

Suppose we have an n-dimensional system of s degrees of freedom that we choose
to represented by N points in a 2n-dimensional phase space. The density of
points in the space is ρ(qk, pk, t). Then, a differential volume element of the
phase space is

dv = (dq1dq2 . . . dqs)(dp1dp2 . . . dps)

and

N = ρdv

For some area dqkdpk in the qk-pk plane, the number of points per unit time
moving into the area across a region of constant qk

ρq̇kdpk (1)

while the number of points per unit time moving into the area across a region
of constant pk

ρṗkdqk (2)

The total number of points per unit time moving into the area dqkdpk is then
the sum of of equations (1) and (2):

ρ(q̇kdpk + ṗkdqk) (3)

To find the total number of points per unit time move out of the area dqkdpk,
we can Taylor expand equation (3) to first order, giving(

ρq̇k + ∂
∂qk

(ρq̇k)dqk

)
dpk +

(
ρṗk + ∂

∂pk
(ρṗk)dpk

)
dqk (4)

Subtracting equation (4) from equation (3) is the total increase in density in
the area, ∂ρ

∂t dqkdpk per unit time:

1I have adapted the derivation found in Classical Dynamics of Particles and Systems, 5th
ed. by Stephen Thornton, Jerry Marion, 276-278. Their derivation leaves out several steps
and is a bit convoluted.

2Definition of the Poisson bracket

https://en.wikipedia.org/wiki/Poisson_bracket


∂ρ

∂t
dqkdpk = −

(
∂
∂qk

(ρq̇k) + ∂
∂pk

(ρṗk)
)
dqkdpk (5)

Dividing equation (5) by the area dqkdpk,

∂ρ

∂t
= −

(
∂
∂qk

(ρq̇k) + ∂
∂pk

(ρṗk)
)

and moving everything to the left-hand-side gives

∂ρ

∂t
+

∂

∂qk
(ρq̇k) +

∂

∂pk
(ρṗk) = 0 (6)

Let’s look at the second two terms of on the left-hand-side of equation (6)
individually. Applying the product rule to each,

∂

∂qk
(ρq̇k) =

∂ρ

∂qk
q̇k + ρ

∂q̇k
∂qk

(7)

and

∂

∂pk
(ρṗk) =

∂ρ

∂pk
ṗk + ρ

∂ṗk
∂pk

(8)

Now recall Hamilton’s equations:q̇k = ∂H
∂pk

ṗk = − ∂H
∂qk

Taking the derivative with respect to qk of the top equation and the derivative
with respect to pk of the bottom equation gives

∂ q̇k
∂qk

= H
∂qk∂pk

∂ṗk
∂pk

= − H
∂pk∂qk

Adding the two equations above and assuming that the Hamiltonian has equal
mixed partials, we get

∂q̇k
∂qk

+
∂ṗk
∂pk

= 0 (9)

With this result in hand, the sum of equations (7) and (8) is

∂

∂qk
(ρq̇k) +

∂

∂pk
(ρṗk) =

∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk (10)

Substituting equation (10) into equation (6) yields

∂ρ

∂t
+

∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk = 0 (11)



The latter two terms can be consolidated3 as the Poisson bracket with the
Hamiltonian:

∂ρ

∂t
+ [ρ,H] = 0 (12)

Equation (12) is the total time derivative of ρ, and for cases when the so-
called “distribution function” ρ(qk, pk, t) commutes with the Hamiltonian (i.e.,
[ρ,H] = 0), then4

dρ

dt
= 0 (13)

We can come up with a distribution function for N particles5 S such that
[S,H] = 0:

S =

〈 N∑
k

~rk · ~pk
〉

By equation (13),

0 = dS
dt

=

〈
d
dt

N∑
k

~rk · ~pk
〉

=

〈 N∑
k

d~rk
dt · ~pk + ~rk

d~pk
dt

〉

=

〈 N∑
k

d~rk
dt · ~pk

〉
+

〈 N∑
k

~rk · d~pkdt

〉

−
〈 N∑

k

d~rk
dt · ~pk

〉
=

〈 N∑
k

~rk · d~pkdt

〉

〈2T 〉 = −
〈 N∑

k

~rk · ~Fk
〉

〈T 〉 = −1

2

N∑
k=1

〈~Fk · ~rk〉 (Virial Theorem)

The right-hand-side is what Clausius called the “virial,” so the virial theorem
says that the average kinetic energy of a system of particles is equal to its virial.

Let’s apply this to the string.

3[f,H] ≡ ∂f
∂q

k

∂H
∂p

k
− ∂f
∂p

k

∂H
∂q

k
= ∂f

∂q
k
q̇k − ∂f

∂p
k
ṗk

4Liouville’s theorem
5I have been using Einstein’s summation convention until now, but I will start writing

sums explicitly to match the conventional notation of the virial theorem.



Energy of transverse modes of string

Given a string under tension T = c2ρl, whose displacement is ξ and mass per
unit length is ρl, we can compute its kinetic energy T and potential energy U :

ξ

x

T

T

ds

dx

θ

By inspection, the kinetic energy of the differential element of string ds is

dT =
1

2
ρldx

(
∂ξ
∂t

)2
(Differential kinetic energy)

while the potential energy of the differential element is6

dU = T (ds− dx)

' T

(
θ2

2

)
dx

=
1

2
T
(
∂ξ
∂x

)2
dx

=
1

2
ρlc

2
(
∂ξ
∂x

)2
dx (Differential potential energy)

The differential kinetic and potential energies can be integrated along the length
of the string, x2 − x1, to give the total kinetic and potential energies.

T =

∫
dT =

∫ x2

x1

1

2
ρl

(
∂ξ
∂t

)2
dx (14)

6Note that dx = dx cos θ ' dx
(

1− θ2

2

)−1
' dx

(
1 + θ2

2

)
. So ds− dx ' θ2

2
dx



and

U =

∫
dU =

∫ x2

x1

1

2
ρlc

2
(
∂ξ
∂x

)2
dx (15)

We wish to compute the time averages of the above quantities, 〈T 〉 and 〈U〉.
For this, we appeal to the virial theorem.

Since the string represents a continuous set of particles, the sum in the virial
theorem becomes an integral:

〈T 〉 = −1

2

∫ x2

x1

〈~F · ~r〉 dx (16)

Also, since we are considering the transverse (as opposed to longitudinal) modes,
~F = F ξ̂, and ~rdx = dξξ̂ = ∂ξ

∂x dxξ̂ where ξ̂ is the unit vector perpendicular to
the x-axis. Then equation (16) becomes

〈T 〉 = −1

2

∫ x2

x1

〈
F
∂ξ

∂x

〉
dx (17)

Now, recall the definition of a conservative force:

F ξ̂ = ~F ≡ −~∇U = −∂U
∂ξ

ξ̂ = − ∂U

∂ξxdx
ξ̂

Differentiating the total potential energy U accordingly,

F ξ̂ = − ∂
∂ξxdx

Uξ̂

= − 1

dx
∂
∂ξx

Uξ̂

= − 1

dx
∂
∂ξx

∫ x2

x1

1

2
ρlc

2
(
∂ξ
∂x

)2
dxξ̂

= −1

2
ρlc

2 ∂
∂ξx

ξ2xξ̂

= −ρlc2 ∂ξ∂x ξ̂ (Force)

Putting the force above into equation (17),

〈T 〉 =
1

2

∫ x2

x1

〈
ρlc

2 ∂ξ
∂x

∂ξ
∂x dx

〉
=

∫ x2

x1

〈
1

2
ρlc

2
(
∂ξ
∂x

)2〉
dx〈∫ x2

x1

1

2
ρlc

2
(
∂ξ
∂x

)2
dx

〉



The integral on the last line is exactly equation (15), the total potential energy
U of the string. Taking its time average gives us the relationship

〈T 〉 = 〈U〉

That is, the time-averages of the kinetic and potential energies are equal for
transverse waves on a string.

Notice that this result is more general than what was shown in class. We have
not made any claims about the boundary conditions. This result therefore
applies to any solution to the wave equation for a string (standing, propagating,
etc.).


