Virial Theorem for Transverse Modes on String
Chirag Gokani

Derivation of the Virial Theoremll

In this discussion, f is a function of canonical variables (g, pr), H = Zj pig;—L

is the Hamiltonian, an [f,H] = T‘IJ;% - %% = ﬁqk - ﬁpk (the last

equality by Hamilton’s equations).

Suppose we have an n-dimensional system of s degrees of freedom that we choose
to represented by N points in a 2n-dimensional phase space. The density of
points in the space is p(gg, pr,t). Then, a differential volume element of the
phase space is

dv = (dq1dqs . . . dgs)(dp1dps . . . dps)

and

N = pdv
For some area dqidpy in the qr-pr plane, the number of points per unit time
moving into the area across a region of constant gy,

Pkdpr (1)
while the number of points per unit time moving into the area across a region
of constant py

PPLAqr (2)
The total number of points per unit time moving into the area dgidpy is then
the sum of of equations and :

p(drdpr. + Prdqr) (3)

To find the total number of points per unit time move out of the area dqxdpy,
we can Taylor expand equation to first order, giving

(Pdk + 5»%(!’%)ko> dpy. + (Ppk + @%(Pﬁk)dpk) dqk (4)

Subtracting equation from equation is the total increase in density in

the area, %qudpk per unit time:

11 have adapted the derivation found in Classical Dynamics of Particles and Systems, 5th
ed. by Stephen Thornton, Jerry Marion, 276-278. Their derivation leaves out several steps
and is a bit convoluted.

2Definition of the Poisson bracket


https://en.wikipedia.org/wiki/Poisson_bracket

3/) F) . 9 .
ad%dpk =- (qu(fo%) + @(Ppk)) dqrdpy, (5)

Dividing equation by the area dgidps,

ap . .
52 == (5 (pin) + 2 (on))
and moving everything to the left-hand-side gives
ap 0 0
— + — —(ppr) =0 6
ar " a4, (pdk) + op, (pPr) (6)

Let’s look at the second two terms of on the left-hand-side of equation @
individually. Applying the product rule to each,

o . dp . Aqy.
4, (pdr) = 9a, Gk + /J’a (7)
and
0 dp Opx
—Epe+p 8
o, ~—(ppr) = apkp " o, (8)

Now recall Hamilton’s equations:

OH
q}c ang
Pk = aqk

Taking the derivative with respect to g of the top equation and the derivative
with respect to p of the bottom equation gives

4k _— _H

gy, 0q1Opk
Opr _ _ _H
Op, ~ OpkOqk

Adding the two equations above and assuming that the Hamiltonian has equal
mixed partials, we get
94, Opx
dq,  Op,
With this result in hand, the sum of equations and is

=0 )

0 dp . dp
—qr + =—p 10
8qk opy, 0q,, k opy, K (10)

Substituting equation ([10]) into equation @ yields

—(pdr) + =—(ppr) =

Op OJp dp
8t+6 +5‘ pr =0 (11)



The latter two terms can be consolidated] as the Poisson bracket with the
Hamiltonian:

% +[p,H]=0 (12)

Equation is the total time derivative of p, and for cases when the so-
called “distribution function” p(gk, pr,t) commutes with the Hamiltonian (i.e.,

[p, H] = 0), ther(]

dp _

dt
We can come up with a distribution function for N particlesE| S such that
[S,H] = 0:

0 (13)

N
S<ka'ﬁk>
%
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(Fy, - 7x) (Virial Theorem)

The right-hand-side is what Clausius called the “virial,” so the virial theorem
says that the average kinetic energy of a system of particles is equal to its virial.

Let’s apply this to the string.

3 = Of oH _ Of OH _ Of 5 _ Of
[f»,H]— da,, 9p, dp, da,  day qk 3pkpk

5T have been using Einstein’s summation convention until now, but I will start writing
sums explicitly to match the conventional notation of the virial theorem.



Energy of transverse modes of string

Given a string under tension 7 = c?p;, whose displacement is £ and mass per
unit length is p;, we can compute its kinetic energy T and potential energy U:

dx z

By inspection, the kinetic energy of the differential element of string ds is

1 2
dT = §pld{p (%) (Differential kinetic energy)

while the potential energy of the differential element isE]

dU = T (ds — dx)

r(5)
(e

1
=5 (8§> dx (Differential potential energy)

The differential kinetic and potential energies can be integrated along the length
of the string, x5 — x1, to give the total kinetic and potential energies.

/dT / 7pl 05 o (14)

SNote that dm:dzcosBNdr( %) ~ dx (1+ ) So ds — dx ~ %dm




and

/dU / Sh (gg) dx (15)

We wish to compute the time averages of the above quantities, (') and (U).
For this, we appeal to the virial theorem.

Since the string represents a continuous set of particles, the sum in the virial
theorem becomes an integral:

== [ (16)

Also, since we are con51der1ng the transverse (as opposed to longitudinal) modes,
F = Ff, and rdr = d§§ 85 dx§ where 5 is the unit vector perpendicular to
the z-axis. Then equation becomes

<T>=—2L1 <F§§> z (17)

Now, recall the definition of a conservative force:
Ao - oU - oUu
FPe=F=-VNU=—-——¢ = ———m
¢ o0& & 8§$dx£
Differentiating the total potential energy U accordingly,

Fé: *agadeé
1 R
dac85 e

1 21 2.
g [ g (3) e
1
= 2plc 36 f f
= 2855 (Force)

Putting the force above into equation ,
1o 2 9€ B¢
(T) 5/ <p 5 3£dx>
1
T2 1
= 35) d
G () )
°1
([ e () )
1



The integral on the last line is exactly equation , the total potential energy
U of the string. Taking its time average gives us the relationship

(1) = (U)

That is, the time-averages of the kinetic and potential energies are equal for
transverse waves on a string.

Notice that this result is more general than what was shown in class. We have
not made any claims about the boundary conditions. This result therefore
applies to any solution to the wave equation for a string (standing, propagating,
etc.).



