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This is a confusing topic, and these notes summarize different
peoples‛ approaches to the topic.

Dr. Blackstock‛s discussion1

Consider a bursting balloon enforcing the initial conditions

p(r, 0) = A[H(r) ´ H(r ´ r0)] (1)
u(r, 0) = 0 . (2)

For reasons not well explained, the volume velocity q = Su must van-
ish at r = 0 (because it‛s spherically symmetric sound?):

lim
rÑ0

q = lim
rÑ0

Su = lim
rÑ0

4πr2u = 0 (3)

The velocity potential ϕ will be used.2 Since the sound obeys the
spherically symmetric wave equation, the velocity potential is of the
form

ϕ =
f(r ´ c0t)

r
+

g(r + c0t)

r
.

The pressure is therefore

p(r, t) = ´ρ0ϕt = ρ0c0
f 1(r ´ c0t) ´ g1(r + c0t)

r
, (4)

1pages 121-124 “Fundamentals of Physical Acoustics”
2Recall that p = ´ρ0ϕt and u = ϕr
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and the particle velocity is

u(r, t) = ϕr = ´
f(r ´ c0t) + g(r + c0t)

r2
+

f 1(r ´ c0t) + g1(r + c0t)

r
. (5)

Applying the initial condition given by equation (2) on equation (5)
gives

f(r) + g(r)

r2
=

f 1(r) + g1(r)

r

This equality is guaranteed if g(r) = ´f(r), because this implies that
g1(r) = ´f 1(r).3 Therefore, equation (4) becomes

p(r, t) = ρ0c0
f 1(r ´ c0t) + f 1(r + c0t)

r
, (6)

and equation (5) becomes

u(r, t) = ´
f(r ´ c0t) ´ f(r + c0t)

r2
+

f 1(r ´ c0t) ´ f 1(r + c0t)

r
.

The volume velocity is therefore

q = Su = 4πr2u

= ´4π[f(r ´ c0t) ´ f(r + c0t)] + 4πr[f 1(r ´ c0t) ´ f 1(r + c0t)] . (7)

The condition given by equation (3) is applied to equation (7):

lim
rÑ0

q = ´4π[f(´c0t) ´ f(c0t)] = 0

ùñ f(´c0t) = f(c0t) . (8)

Taking the derivative of equation (8) gives

´f 1(´c0t) = f 1(c0t) , (9)

i.e., that f 1 is odd.
Meanwhile, the initial condition given by equation (1) is applied to

equation (6):

A[H(r) ´ H(r ´ r0)] = 2ρ0c0
f 1(r)

r
3The converse is not necessarily true.
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Solving the above for f 1(r) gives

f 1(r) =
rA[H(r) ´ H(r ´ r0)]

2ρ0c0
(10)

Enforcing equation (9) (the oddness of f 1) on equation (10) requires
that f 1 is defined for ´r as well as +r. This can be achieved using
the rectangle function:4

f 1(r) =
rA

2ρ0c0
rect

(
r

2r0

)
Therefore,

f 1(r ˘ c0t) =
A

2ρ0c0
(r ˘ c0t) rect

(
r ˘ c0t

2r0

)
(11)

Substituting equation (11) into equation (6) gives the solution:

p(r, t) =
A

2r

[
(r ´ c0t) rect

(r ´ c0t

2r0

)
+ (r + c0t) rect

(r + c0t

2r0

)]

Dr. Hamilton‛s discussion5

Consider a sphere of radius r0. At r = r0, the incident pressure wave
is given by pin(t). The pressure solution is therefore of the form

p =
r0
r
pin(t+ r/c0) +

F (t ´ r/c0)

r
, (12)

where F corresponds to the wave emerging through the focus. The
goal of what follows is to determine F in terms of pin. First, apply
the momentum equation for a spherical wave, ρ0u̇ = ´pr, to equation
(12):

ρ0
Bu

Bt
=

F 1(t ´ r/c0) ´ r0p
1
in(t+ r/c0)

c0r
+

F (t ´ r/c0) + r0pin(t+ r/c0)

r2

4rect
(
x´x0

w

)
= H(x ´ x0 + w/2) ´ H(x ´ x0 ´ w/2)

5from Acoustics I lecture notes. Dr. Hamilton‛s discussion is a bit more general than Dr. Black-
stock‛s.
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Solving the above for u by integration over time gives

u = ´
1

ρ0

ż

Bp

Bt
dt

=
F (t ´ r/c0) ´ r0pin(t+ r/c0)

ρ0c0r
+

F̃ (t ´ r/c0) + r0p̃in(t+ r/c0)

ρ0r2
, (13)

where p̃ is the antiderivative of p, and F̃ is the antiderivative of F .
When the boundary condition limrÑ0 q = limrÑ0 4πr

2u = 0 is applied
to equation (13), the first term of equation (13) vanishes, and the
second term gives

4π

ρ0
[F̃ (t) + r0p̃in(t)] = 0

Solving the above for F̃ (t) gives

F̃ (t) = ´r0p̃in(t) ùñ F (t) = ´r0pin(t)

Substituting F (t) = ´r0pin(t) into equation (12) gives the solution

p =
r0
r
pin(t+ r/c0) ´

r0
r
pin(t ´ r/c0), (14)

The first term corresponds to the incoming wave, and the second
term corresponds to the outgoing wave.

What happens at r = 0 (the focus)? The limit of equation (14) is
taken in that limit:

lim
rÑ0

p = lim
rÑ0

r0
r

[
pin(t+ r/c0) ´ pin(t ´ r/c0)

]
= lim

rÑ0

r0
r

[
pin(t) +

r

c0
p1
in(t) ´ pin(t) +

r

c0
p1
in(t)

]
=

2r0
c0

p1
in(t)

In the second equality above, the function is Taylor expanded to
first order, and the higher-order terms are dropped. The conclusion
is that the pressure at the center of the sphere is proportional to
the time derivative of the incident pressure.

p(r = 0, t) =
2r0
c0

p1
in(t)
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