Three-medium problem

Suppose there are three media, labelled I, II, and III, as described in David
Blackstock’s Fundamentals of Physical Acoustics, page 163.

In medium I, the spatial pressure field is

PI = Ale_jkll + Blejklw
In medium II, the spatial wave pressure field is

Py = Age™ %27 4 Byeik®

And in medium III, we take for convenience x = [ to be the origin for the
transmitted wave, so the spatial pressure field is

Pip = Ageks(@=D

Boundary Conditions at the Interface of I & 11
Continuity of pressure at the interface between media I and II demands that
Py = Py at x = 0, which simplifies to

A+ By = A, + By (E-4)

Meanwhile, to match the particle velocity U at x = 0, we appeal to the conser-
vation of momentum, with the time-dependence e/*! factored out:

J opP

= 5 (Momentum equation)
pow 0T

Applying the (Momentum equation) to P, we find the particle velocity in
medium I at x = 0 to be

U = L(_]’Alkl + jBik1)
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Similarly applying the (Momentum equation) to Py, we find the particle velocity
in medium IT at x = 0 to be

Un = Lw(—jx‘bké + jBaksy)
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Matching the velocities (i.e., equating Uy and Ury),



Z
A — B, = ?;(Az — By) (E-5)

Boundary Conditions at the Interface of IT & III
Continuity of pressure at the interface between media II and IIT demands that
P = Pr at x = [, which simplifies to

Ageijkzl + Bgejkzl = Ag (E—6)

Meanwhile, to match the particle velocity U at x = [, we again apply the
(Momentum equation) to Py and Prip. We find the particle velocity in medium
IT at x =1 to be

UH = —jkgAgEiijl +jk2B26jk2l)
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Similarly, we find the particle velocity in medium III at = to be

U = L(—jAzks,)
p3w
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Matching the velocities (i.e., equating Uy and Ury),
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Age T2l _ Byeikel — 22 4. (E-7)
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Solving the system

We want to find the pressure transmission coefficient, which is the ratio of the
pressure amplitude in to the pressure amplitude out, As/A;. To do this, we
should eliminate the other pressure coefficients, By, As, and Bs.

Adding equations (E-4) and (E-5) eliminates Bj:

(4 7
241 = (1 + 22) Ay + <1 - ZQ) By (E—S)

If we can write equation (E-8) in terms of A; and As, we can then solve for
A1/As =T. To do this, we can write A; and Bz in terms of A3. Adding (E-6)
and (E-7) gives us A, and subtracting (E-6) and (E-7) gives us Bs,
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adding... 2A4,e 7kl = A4 (1 + 2)
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subtracting. .. 2B2e’"?"' = A3 |1 — ==
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Solving the above equations for As and Bs,
. 1 ikol Z2 .
adding... As = §A3€J 21+ A (As in terms of Aj)
3
. 1 — kol Z2 .
subtracting... By = §A36 IR — oA (B2 in terms of Aj3)
3

Substituting (A in terms of As) and (B2 in terms of A3) into equation (E-8),

24, = (1 — | A Jkol 1 ) 1—-221Z24 Jkol 122
1 ( + Zz) 5 3€ ( + Zg) -l—( ZQ) 5 3€ Zs
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1 (1+Zf~) (1+7§>eﬁk21+(1—z—;) (1—7§>6 jkal
= 4

(1+%+%+%)6jk2l+(1_%—%+%)67]k2l
= 4

(1 + %) (ejkzl + e—jkgz) + (% n %) (eijl _ e—jk2l)
- 4

2(1+%) (M)+2j(%+%) (%ﬂe—ﬂczl)
= 2

2

— (E-9)
(1 + %) cos kol + 7 (% + %) sin kol

Similarly, the pressure reflection coefficient is the ratio of the reflected pressure
out to the pressure in, B1/A; = R.

We can solve for this ratio by dividing (E-4) by A;:

_A2 BQ
L+ R =2+ 2

Substituting in (As in terms of A3z) and (Bs in terms of Ajz) into the above,
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=T | cos kal +]— sin kgl)

= R=T (cos kol +]Z— sin kzl) -1 (R in terms of T')

Substituting equation (E-9) in (R in terms of T),

2

R:
(1 + %) cos kol + j (% + %) sin kol

Z
(cos kol + jZ—2 sinkgl) -1
3

2 cos kol +2j% sin kol — (1 + é) cos kol — j (22 + Zl) sin kol
(1 + %) cos kol + j ( + ?) sin kol

B (1 — g—;) cos kol + 7 (—2 — %) sin kol

(1 + %) cos kol + 7 (2 + ?) sin kol

(E-10)

Phew!



