Radiation from general axisymmetric (m = 0) spher-
ical velocity sourcd|

Let the radius of the spherical source be a. At the boundary of the sphere,
r = a, there is a radially pulsating velocity source given by

Ur(av 0, t) = uOf(e)ejwt (1)

The source causes outgoing (i.e., throw out hﬁ} )(kr))
expressed as an expansion of Legendre polynomialsﬂ

pressure waves, which are

p(r, 6,t) ZA P, (cos 0)h,, (kr)e?? (2)

To write equation in terms of particle velocity, the momentum equation
po%—;‘ + Vp = 0, which for harmonic waves becomes u,(r,0) = —jwlpo %, is
applied, giving

up(r,0,t) =

Ay, Py (cos )., (kr)el“t 3
D ) ®

where co = 7.

Expanding the angular distribution function f(6) in equation in terms of
Legendre polynomials gives

uy(a, 0) = uge?* Z Un P, (cos6) (4)
n=0

where the coefficients U,, are found using the orthogonality of Legendre polyno-
mials.

U, _2n+1/ f(0)P,(cosB)sinb do (5)

Equating equations at r = a and (| ., the Legendre polynomials and the
time dependence cancel:

uOZU _—WCO ZA R (ka)

n=0

Since this must hold for each term in the summations on both sides,

uUp, = —;Anh;(ka)
Jwco

IFrom Acoustics II class notes, Dr. Mark F. Hamilton

2The Hankel functions of the second kind, hslz), will be denoted h,, for convenience.



Solving for A,

Un

An = —jpocorri—
JPoCo b (ka)

Then, equation becomes

h,"g"”) U,y Py (cos ) (6)

_ . Jjwt
p(r,0,t) = —jpocouoe’ HZ:O W (ha)
Far field limit: kr — oo
Note that

fim_h, (kr) = S/
krll)noo n\FT) = kr ¢

Since /™2 = j, I (nHT/2 — jntl g5 equation @ becomes

ej(wt—kr) 0

.nUn
p(r,0,t) = pocoug - ngo 7 (ha) P, (cos6) (7)

Note that the angular dependence has been factored out of the radial depen-
dence.

Small source limit in the far field: kr — oo, ka < 1

Continuing in the far field, the small source limit ka < 1 is now evaluated.
First note that ka < 1 = a < A, which means that the source is point-like
compared to the wavelength. Therefore, the wavelength is effectively constant
along the circumference of the source. So, higher spatial harmonics are excluded,

i.e., the n = 0 term dominates in this limit for Uy # 0. Then, equation
becomes

Uozl/ f(0)sinfdo
2Jo

Multiplying the right-hand-side by 1 = 2ma’

2ma2?

1 T 5 .
47ra2/0 f(0)2ra®sin 6 do

Up =

Noting that 27a? sin 6 d is dS, the differential surface area of a sphere at radius
r = a, the above becomes



1
Uo—g/de

That is, Uy is just the spatial average of f on the surface of the sphere.

Further, the volume velocity of the source Qg is

%:/wﬂww
= UoSUO

= draugUy

Also note that
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= (j)(ka)*, n=0

= 30)ka)®, =1

Combining these two observations of the ka < 1 limit, equation becomes

el (wt—kr) )
() (ka)?Uy
(wt—kr)

p(r,t) = pocouo

po€’
47r

= jwQo (8)

This is the so-called “equation for a simple simple source.” See page 359, equa-
tion D-7. Note that there is no angular dependence in the far-field for ka < 1
for any source distribution for Uy # 0.

Large source limit in the far field: kr — oo, ka > 1
Noting that

: — j(ka—nm/2)
o (k)

_ —mn ka
=j "kael"?,

equation (7) becomes



_ A _j(wt—k(r—a)) S U P 0
D pOCOUOTG Z nPn(cos0)

n=0

The sum in the above equation is precisely the expansion of f(6) in terms of
Legendre polynomials. The above becomes

p= pocouof(ﬁ)%ej(”t*k(“a)) (Geometric acoustic limit)

The (Geometric acoustic limit) is a radial projection of f(6) from a to radius r,
i.e., no diffraction.



