
Spherical symmetry in
acoustics and quantum mechanics

Introduction
The following spherical coordinates are used, in accordance with [1] and [2].12

Eigenfunctions in acoustics
The solution to the Helmholtz equation

∇2p ´ B2p/Bt2 = 0

in spherical coordinates is given by linear combinations of the eigenfunctions [2]

pnlm(r, θ, ϕ) =

#

jn(klr)
nn(klr)

+ #

cos (mϕ)
sin(mϕ)

+

Pm
n (cos θ) (1)

1Figure 4.1 from [1]
2[2] uses ψ in place of ϕ, so as to not confuse the velocity potential with the angular coordinate.

Here the more conventional ϕ is used to denote the azimuthal angle, which is consistent with [1].
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where

n = 0, 1, 2, . . .8,

l = 1, 2, 3, . . .8,

and |m| ď n

Three cases arise:

1. n = 0, l = 0, 1, 2, . . .8, and m = 0 describes sound with spherical symmetry. This
means the sound has polar and azimuthal symmetry, i.e., p = p(r).

2. n = 0, 1, 2, . . .8, l = 0, 1, 2, . . .8, and m = 0 describes sound with azimuthal
symmetry, but not polar symmetry, i.e., p = p(r, θ).

3. n = 0, 1, 2, . . .8, l = 0, 1, 2, . . .8, and |m| ď n describes sound without symmetry,
i.e., p = p(r, ϕ, θ).

Naïve students like Chirag may wonder why there is no fourth case, sound with az-
imuthal symmetry and without polar symmetry, i.e., p = p(r, ϕ). Such inept students
simply point to the inequality |m| ď n and say, “That‛s just the way it is. If n = 0, then
m = 0. That is, azimuthal symmetry implies polar symmetry.”

While this reasoning is correct mathematically, brighter students like Jackson
provide a more physical answer as to why p ‰ p(r, ϕ). Jackson displays his intellectual
prowess by offering a proof by contradiction:

Assume there is such a function, p = p(r, ϕ). This functional form means
that at a given radius r0, p takes on different values for different az-
imuthal angles ϕA and ϕB:

pA(r0, ϕ1) ‰ pB(r0, ϕ2) . (2)

Since equation (2) holds for any given polar angle θ0, it can equivalently be
written as

pA(r0, θ0, ϕ1) ‰ pB(r0, θ0, ϕ2) . (3)
Choosing θ0 = 0, equation (3) becomes

pA(r0, 0, ϕ1) ‰ pB(r0, 0, ϕ2) . (4)

Note that the coordinate on the left-hand and right-hand sides refers to
the same point, the north pole: (r0, 0, ϕ1) = (r0, 0, ϕ2). Equation (4) says that
the pressure is multivalued at this point, which contradicts the assumption
that p is a function. Therefore, the assumption that p = p(r, ϕ) is false.

Dr. Hamilton‛s response:
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Very interesting.  I agree with Jackson‛s math, and we discuss something
similar in Acoustics II in connection with cylindrical resonators, when we
talk about why there cannot be pure spinning modes (m,n,N) = (m, 0, 0)
(see comment at bottom of p. 405 in Blackstock).  But I have yet to un-
derstand the physics underlying the fact that natural frequencies in a
spherical resonator do not depend on the azimuthal mode number m.  This
is referred to as degeneracy,3 and while such degeneracy makes sense
physically for square membranes and cubic enclosures, the physical signif-
icance is elusive for spheres.

Eigenfunctions in quantum mechanics
No matter how hard he tries, Chirag is never able to retain much knowledge. A fool
in his own right, he bumbles on from one fiasco to the next, constantly re-learning
lessons from years past. Now he reminds himself of the indicial notation used in
quantum mechanics, which he often confuses with that of acoustics.

The solution to the time-independent Schrödinger equation

´
ℏ2

2m
∇2ψ + V ψ = Eψ

for a infinite spherical potential

V (r) =

#

0 if r ď a

8 if r ą a
(5)

consists of eigenfunctions very similar to equation (1) [1]:4

ψnlm(r, θ, ϕ) = jl(βnlr/a)e
imϕPm

l (cos θ)

where now56

l = 0, 1, 2, . . .8 = orbital quantum number,
n = 1, 2, 3, . . .8

and |m| ď l = magnetic quantum number,
3Each eigenfrequency is 2n + 1-fold degenerate, since there are 2n + 1 different values of m for

each value of n.
4βnl appears in the argument of the cylindrical Bessel function to match the boundary conditions

given by (5). The Neumann functions are tossed because they diverge at r = 0, and the complex
exponential form of the ϕ-dependence is chosen because the eigenfunctions are complex.

5Confusingly, the orbital quantum number is sometimes called that “azimuthal quantum number” for
historical reasons [1].

6n takes on the name, “principal quantum number” when the potential is set to 1/r, which corresponds
to the hydrogen atom.
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Three cases arise, similar to the solution to the Helmholtz equation of acoustics in
spherical coordinates, only with n Ø l.

1. l = 0, n = 0, 1, 2, . . .8, and m = 0 describes sound with spherical symmetry. This
means the wave function has polar and azimuthal symmetry, i.e., ψ = ψ(r).

2. l = 0, 1, 2, . . .8, n = 0, 1, 2, . . .8, and m = 0 describes sound with azimuthal
symmetry, but not polar symmetry, i.e., ψ = ψ(r, θ).

3. l = 0, 1, 2, . . .8, n = 0, 1, 2, . . .8, and |m| ď l describes sound without symmetry,
i.e., ψ = ψ(r, ϕ, θ).

Again, one cannot have ψ(r, ϕ), because this will result in a multivalued wave function.
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