In an infinite medium, the total field ¢ (r) (velocity potential, or pressure if you
want) is given by the volume integral
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where f(rg) is the source strength, and where g, (r|rg) is the free-field Green’s
function.

Noting that the total field is also given by the Helmholtz-Kirchoff integral,
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Comparing equations and shows that the surface integral in must
vanish:

0= # {gw(r0|r)%nz0) — 77Z}(,,,O)Sgw('r-oh-) }dS

_# eik}R 8’(&(7‘0) _d}( ) eikR dS
- iR 9 "0)%ng a7 [0

ekt OY(ro) _
= 4p {5 — ik (rg) }dSo

The area of a sphere goes as R?, so for the right-hand-side to go to 0, the

integrand must go to 0 faster than R~2 as R — co. Since 4kR is oscillatory, it
does not affect the convergence to 0. The condition for convergence is thereforeﬂ
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This is the so-called Sommerfeld radiation condition, which must be satisfied
by any field in an infinite medium.

IFor two functions A(x) and B(z) that approach 0 as x — oo, A(x) — 0 faster than B(x)

if limg—y 00 BEB — 0.



