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MEMOIRE

Sur le principe des forces vives dans les mouvemens relatifs
des Machines ;

Par M. G. CORIOLIS.

LU A I’ACADEMIE DES SCIENCES, LE 6 SUIN 1831,

La détermination du mouvement d'un systéme de corps liés dune
maniére quelconque & des points qui sont entrainés dans l'espace, est
une des questions qui intéressent le plus la théorie des machines, parti-
culierement celle des roues hydrauliques. Jean Bernouilli a traité le
mouvement d'un point matériel pesant dans un tube droit tournant
horizontalement d'un mouvement uniforme autour d'un de ses points.



Defining a Rotating Frame

Primed coordinates x{ refer to the inertial axes.
Un-primed coordinates x; refer to the rotating axes.

The frames are related by

r=R+7r




rr=R+7r

Each of the quantities in r' = R + 7 can be measured in either the
inertial frame (denoted by subscript |nertial) OF the non-inertial
frame (denoted by subscript non-Inertial)-

For example, Rinertial = — RNon-Inertial



Introducing “Rotation”

If the non-inertial system experiences some infinitesimal rotation
40, then

(dfjlnertial = dgx F

Dividing by dt,
. dd
dr _avr .
(dt>lnertia| dt !
Defining & = 3—(5,
d7 S
(dT‘L)InertiaI Cwxr (1)

Equation (1) is in terms of 7 (not ), so this is not the velocity of
a rigid body as measured in the inertial frame. Does anyone have a

physical interpretation for equation (1)?



Non-Rigid Bodies

In the more general case that the object moves with respect to the
non-inertial frame, equation (1) becomes

dF) _ (dF) LG xF
dr = (4r WX 2
<dt Inertial dt Non-Inertial ( )

Equation (2) is generically true for an arbitrary vector linear in 7. If
equation (2) is physically valid, a torque on the object must be
calculated to be the same in both frames. Since 7 = lad = I%, it
suffices to check if 9< is the same in both frames:

(

o_‘ﬂ-
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Inertial Non-Inertial

) Non-Inertial
Yay!



Velocity as measured in the inertial frame

We are interested in the velocity as measured in the inertial frame,

so we must write ( 47 = (4 + & x ' (equation
dt dt
Inertial Non-Inertial _|

2) in terms of r'. To do this, we differentiate r’ = R + 7 with
respect to time:

(L) - (dj) I (d;)
dt Inertial dt Inertial dt Inertial

Substituting equation (2) into the above gives

dﬁ) _ (dﬁ) I (d?) L OxT
e =5 Ir WX 3
(dt Inertial dt Non-Inertial dt Non-Inertial ( )

More conveniently in terms of velocities,

Vinertial = V' + VNon-Inertial + & X T (4)



Applying Newton's Second Law. . .

— d\_/‘lnertial
F = m=5

d (7, = - 2
mgr (V + VNon-Inertial + W X I’)

~

=m| R+ CIVN«::g-tI.nertiaI + O XF+0x (%)
Inertial

=~

But & x ( §F =@ x (4 + & x (& x ), so
. dt .
Inertial Non-Inertial

Q_‘Q.
~

—

F=m (R + 5Non—|nertia| + W x F+ 20 x ‘7Non—|nertia| + W x (‘Ij X F))

—

Solvmg for manon-inertial = Feffective

—

Feffective = F — MR — m& X F'— 2md X Vion-Inertial — MW X (W X F)



Physical Interpretation

I?eeffective = ﬁ_ m'E\S —mi X F—2md x ‘7Non-|nertia| — m@ X (03 X F)

1. F is the force on the object measured in the inertial frame.

2. —mR is the translational acceleration of the entire non-inertial
frame.

3. —mij x Fis the rotational acceleration of the non-inertial
frame.

4. —2md X VNon-Inertial € VNon-Inertial 1S the Coriolis force.

5. —m&@ x (W x r) is the centrifugal force. It is directed outward.
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Mass on a frictionless, flat plane rotating at constant w

— —

Feffective = F —MR—m X r—2mdJ X VNon-Inertial — M X (W X F) (5)

But. ..
m Since there are no external forces in the inertial frame, F=o.
m Since the non-inertial frame has no translational acceleration,
~-mR =0
m Since w is constant, —mE x F=0

.. .equation (5) becomes

—

Feffective = —2M X ViNon-Inertial — MW X (W X F)

Dividing by the mass,

5effective = —2W x VNon—InertiaI — W x (C_J X F) (6)



Since & = w2,
deffective — —20 % VNon-Inertial — W X (w X F)
is reduced to two coupled second-order ODEs:

Fe = w?r + 2wr,

ry = —w2ry — 2wk
These equations can be numerically integrated to find
r(t) = r(t)X + r,(t)y under given initial conditions.
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For those interested, these numerical solutions are publicly
available at https://cag170030.github.io/chirag/physics.html.


https://cag170030.github.io/chirag/physics.html

Foucault Pendulum

Pendule de Foucault, Panthéon, Paris, France




— —

Fetfective = F — MR — m X F'—2md X VNon-Inertial — M@ X (W X F)

m The motion is confined to the x-y plane, so any vertical
motion can be neglected (z ~ 0, for example)

m The only external force in the inertial frame is tension T

m The Earth is not appreciably spinning up or down (u_J' ~ 0).

m The centrifugal term md x (&J x r) does not change the
angular direction of the motion, but this is primarily what the
Foucault pendulum measures, so it will be neglected.

The only external force in the inertial frame is tension T_ and
Equation (5) becomes

Feffective = mg_: + T —2md x VNon-Inertial

or dividing by m,

Aeffective = & T ; — 2W X VNon-Inertial



We want to solve

5effective = g + ; — 20 x \7Non—lnertia| (7)

for x(t) and y(t).
Since the pendulum is oscillating through a small angle,

Tos—Tj = -2

Ty:—T%:—@ (8)

T,~T~mg
The x, y, and z components of angular velocity & depends on the

latitude A:

Wy = —W COS A
Wy = (9)

Wy = wsin A



Making substitutions (8) and (9) and defining a? = £, equation
(7) becomes

{5& + a’x ~ 2w,y (10)

y+ Ozzy ~ —2w,X
To solve (10), add the first to i times the second:
(X4 iy) + a®(x + iy) = —2w,(ix — y) = —2iw, (X + iy)
Defining g ~ x + iy,
G+ 2iw, g+ a?qg~0 (11)

We immediately read off the solution:

C/(t) _ eiwzt(Ae\/—wg—azt + Be—\/—wg—oﬂt) (12)



Note that if the Earth were not rotating, equation (11) would
become
§ +a’qd ~0

whose solution is
q'(t) = X' (t) + iy'(t) = Ae’™t + Be~/t (13)

where we recognize that « is the angular frequency of the
pendulum. Since a » w;, solution (12) becomes

q(t) ~ eiwzt(Aeiat + Be—iat) (14)

Comparing equations (13) and (14) we see that



Substituting back g ~ x + iy and ¢’ ~ x’ + iy,

q/(t)efiwzt

(<(8) + i (£)e "
(x'(t) + iy’ (t))(cosw,t — isinw,t)
(x

q(t)
x(t) + iy(t)

= (X' cosw,t + ¥ sinw,t) + i(—x"sinw,t + y' cosw;,t)
Corresponding the real and imaginary parts,

x(t) = x' cosw,t + y'sinw,t
y(t) = —x'sinw,t + y’ cosw,t




Conclusion & Questions
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