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Defining a Rotating Frame

Primed coordinates x 1i refer to the inertial axes.

Un-primed coordinates xi refer to the rotating axes.

The frames are related by

~r 1 “ ~R ` ~r

ÝÑ
r 1

~R

~r

x 1
i

xi



~r 1 “ ~R ` ~r

ÝÑ
r 1

~R

~r

x 1
i

xi

Each of the quantities in ~r 1 “ ~R ` ~r can be measured in either the
inertial frame (denoted by subscript Inertial) or the non-inertial
frame (denoted by subscript Non-Inertial).

For example, ~RInertial “ ´
~RNon-Inertial



Introducing “Rotation”

If the non-inertial system experiences some infinitesimal rotation
δθ, then

pd~rqInertial “ d~θ ˆ ~r

Dividing by dt,

´

d~r
dt

¯

Inertial
“

d~θ

dt
ˆ ~r

Defining ~ω ” d~θ
dt ,

´

d~r
dt

¯

Inertial
“ ~ω ˆ ~r (1)

Equation (1) is in terms of ~r (not ~r 1), so this is not the velocity of
a rigid body as measured in the inertial frame. Does anyone have a
physical interpretation for equation (1)?



Non-Rigid Bodies

In the more general case that the object moves with respect to the
non-inertial frame, equation (1) becomes

´

d~r
dt

¯

Inertial
“

´

d~r
dt

¯

Non-Inertial
` ~ω ˆ ~r (2)

Equation (2) is generically true for an arbitrary vector linear in ~r . If
equation (2) is physically valid, a torque on the object must be
calculated to be the same in both frames. Since ~τ “ I ~α “ I d~ω

dt , it

suffices to check if d~ω
dt is the same in both frames:

´

d~ω
dt

¯

Inertial
“

´

d~ω
dt

¯

Non-Inertial
` ~ω ˆ ~ω

“

´

d~ω
dt

¯

Non-Inertial

Yay!



Velocity as measured in the inertial frame

We are interested in the velocity as measured in the inertial frame,

so we must write
´

d~r
dt

¯

Inertial
“

´

d~r
dt

¯

Non-Inertial
` ~ω ˆ ~r (equation

2) in terms of ~r 1. To do this, we differentiate ~r 1 “ ~R ` ~r with
respect to time:

´

d~r 1

dt

¯

Inertial
“

´

d ~R
dt

¯

Inertial
`

´

d~r
dt

¯

Inertial

Substituting equation (2) into the above gives

´

d~r 1

dt

¯

Inertial
“

´

d ~R
dt

¯

Non-Inertial
`

´

d~r
dt

¯

Non-Inertial
` ~ω ˆ ~r (3)

More conveniently in terms of velocities,

~vInertial “
~V ` ~vNon-Inertial ` ~ω ˆ ~r (4)



Applying Newton’s Second Law. . .

~F “ m d~vInertial
dt

“ m d
dt

´

~V ` ~vNon-Inertial ` ~ω ˆ ~r
¯

“ m

ˆ

:~R ` d~vNon-Inertial
dt ` 9~ω ˆ ~r ` ~ω ˆ

´

d~r
dt

¯

Inertial

˙

But ~ω ˆ
´

d~r
dt

¯

Inertial
“ ~ω ˆ

´

d~r
dt

¯

Non-Inertial
` ~ω ˆ p~ω ˆ ~rq, so

~F “ m

ˆ

:~R ` ~aNon-Inertial `
9~ω ˆ ~r ` 2~ω ˆ ~vNon-Inertial ` ~ω ˆ p~ω ˆ ~rq

˙

Solving for m~aNon-Inertial ”
~Feffective,

~Feffective “
~F ´m

:~R ´m 9~ω ˆ ~r ´ 2m~ω ˆ ~vNon-Inertial ´m~ω ˆ p~ω ˆ ~rq



Physical Interpretation

~Feffective “
~F ´m

:~R ´m 9~ω ˆ ~r ´ 2m~ω ˆ ~vNon-Inertial ´m~ω ˆ p~ω ˆ ~rq

1. ~F is the force on the object measured in the inertial frame.

2. ´m :R is the translational acceleration of the entire non-inertial
frame.

3. ´m 9~ω ˆ ~r is the rotational acceleration of the non-inertial
frame.

4. ´2m~ω ˆ ~vNon-Inertial 9 ~vNon-Inertial is the Coriolis force.

5. ´m~ω ˆ p~ω ˆ ~rq is the centrifugal force. It is directed outward.

~ω

~r

~ω ˆ ~r

´~ω ˆ p~ω ˆ ~rq

~ω ˆ p~ω ˆ ~rq



Mass on a frictionless, flat plane rotating at constant ω

~Feffective “
~F´m

:~R´m 9~ωˆ~r´2m~ωˆ~vNon-Inertial´m~ωˆp~ωˆ~rq (5)

But. . .

Since there are no external forces in the inertial frame, ~F “ 0.

Since the non-inertial frame has no translational acceleration,

´m
:~R “ 0

Since ω is constant, ´m 9~ω ˆ ~r “ 0

. . . equation (5) becomes

~Feffective “ ´2m~ω ˆ ~vNon-Inertial ´m~ω ˆ p~ω ˆ ~rq

Dividing by the mass,

~aeffective “ ´2~ω ˆ ~vNon-Inertial ´ ~ω ˆ p~ω ˆ ~rq (6)



Since ~ω “ ωẑ ,

~aeffective “ ´2~ω ˆ ~vNon-Inertial ´ ~ω ˆ p~ω ˆ ~rq

is reduced to two coupled second-order ODEs:

#

:rx “ ω2rx ` 2ω 9ry

:ry “ ´ω
2ry ´ 2ω 9rx

These equations can be numerically integrated to find
~rptq “ rxptqx̂ ` ry ptqŷ under given initial conditions.



For those interested, these numerical solutions are publicly
available at https://cag170030.github.io/chirag/physics.html .

https://cag170030.github.io/chirag/physics.html


Foucault Pendulum

Pendule de Foucault, Panthéon, Paris, France



~Feffective “
~F ´m

:~R ´m 9~ω ˆ ~r ´ 2m~ω ˆ ~vNon-Inertial ´m~ω ˆ p~ω ˆ ~rq

The motion is confined to the x-y plane, so any vertical
motion can be neglected ( 9z „ 0, for example)

The only external force in the inertial frame is tension ~T

The Earth is not appreciably spinning up or down ( 9~ω „ 0).

The centrifugal term m~ω ˆ p~ω ˆ ~rq does not change the
angular direction of the motion, but this is primarily what the
Foucault pendulum measures, so it will be neglected.

The only external force in the inertial frame is tension ~T , and
Equation (5) becomes

~Feffective “ m~g ` ~T ´ 2m~ω ˆ ~vNon-Inertial

or dividing by m,

~aeffective “ ~g `
~T

m
´ 2~ω ˆ ~vNon-Inertial



We want to solve

~aeffective “ ~g `
~T

m
´ 2~ω ˆ ~vNon-Inertial (7)

for xptq and yptq.

Since the pendulum is oscillating through a small angle,

$

’

’

&

’

’

%

Tx » ´T
x
l » ´

mgx
l

Ty » ´T
y
l » ´

mgy
l

Tz » T » mg

(8)

The x , y , and z components of angular velocity ~ω depends on the
latitude λ:

$

’

’

&

’

’

%

ωx “ ´ω cosλ

ωy “ 0

ωz “ ω sinλ

(9)



Making substitutions (8) and (9) and defining α2 ”
g
l , equation

(7) becomes

#

:x ` α2x » 2ωz 9y

:y ` α2y » ´2ωz 9x
(10)

To solve (10), add the first to i times the second:

p:x ` i :yq ` α2px ` iyq » ´2ωzpi 9x ´ 9yq “ ´2iωzp 9x ` i 9yq

Defining q » x ` iy ,

:q ` 2iωz 9q ` α2q » 0 (11)

We immediately read off the solution:

qptq “ e iωz tpAe
?
´ω2

z´α
2t ` Be´

?
´ω2

z´α
2tq (12)



Note that if the Earth were not rotating, equation (11) would
become

:q1 ` α2q1 » 0

whose solution is

q1ptq “ x 1ptq ` iy 1ptq “ Ae iαt ` Be´iαt (13)

where we recognize that α is the angular frequency of the
pendulum. Since α " ωz , solution (12) becomes

qptq » e iωz tpAe iαt ` Be´iαtq (14)

Comparing equations (13) and (14) we see that

qptq “ q1ptqe´iωz t



Substituting back q » x ` iy and q1 » x 1 ` iy 1,

qptq “ q1ptqe´iωz t

xptq ` iyptq “ px 1ptq ` iy 1ptqqe´iωz t

“ px 1ptq ` iy 1ptqqpcosωz t ´ i sinωz tq

“ px 1 cosωz t ` y 1 sinωz tq ` ip´x 1 sinωz t ` y 1 cosωz tq

Corresponding the real and imaginary parts,

#

xptq “ x 1 cosωz t ` y 1 sinωz t

yptq “ ´x 1 sinωz t ` y 1 cosωz t
(15)



Conclusion & Questions
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