Radiation force: waves on a string

CNLD Group Meeting

September 10, 2025

Across	
1 _	measured the parallax of the Great Comet of 1577.
	explained the orientation of the tails of comets by drawing an analogy to acoustics.
6 T	his is the order of the wave variable at which radiation force is studied.
7 T	he energy of a string with tension \mathcal{T} is $\frac{1}{2}\mathcal{T}(\partial \xi/\partial x)^2$, where ξ is the transverse displacement.
9 T	he density equals $L = T - U$.
10 ($\mathcal{T}\xi_{xx} - \rho_0 \xi_{tt} = 0$ is the equation, where ρ_0 is the density of the string.
11	$I = -T(\partial \xi/\partial x)(\partial \xi/\partial t)$ is the of a wave on a string.
$12 \tilde{a}$	$\partial I/\partial x + \partial E/\partial t = 0$ is a statement of conservation; its electromagnetic version is known as Poynting's theorem.
14 7	The coefficient equals A_r/A_i .
18 /	Acoustic radiation force when volume is constrained is named after
19 8	$\partial g/\partial t = \partial S/\partial x$ is a statement of conservation at quadratic order.
Down	
2 _	wrote that "the matter of a comet isdriven away in the direction of the solar rays to form the tail."
4	wrote that "there is a pressure in the direction normal to the wavesequal to the energy in unit of volume."
5 Ta	aylor Wang flew aboard the in 1985 to conduct radiation force experiments.
8 T	he energy of a string is $\frac{1}{2}\rho_0(\partial \xi/\partial t)^2$.
13 3	$S = L - \rho_0 (\partial \xi / \partial t)^2$ is the radiation
	The coefficient equals $A_t/\overline{A_i}$.
	experimentally demonstrated that particles in a standing wave accumulate towards the nodes.
_	Acoustic radiation force in free space is named after