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Abstract

Dubois et al. reported the “the first experimental realization of an impedance matched

acoustic double zero refractive index material”1 in 2017. In this paper, finite element methods

(FEM) are used to replicate the quasi-2D acoustic metamaterial (AMM) that Dubois et al.

claim to host double-zero (DZ) properties. The dispersion relation generated by FEM shows

that the AMM hosts a Dirac-like cone, a feature in the dispersion relation that induces a

simultaneously vanishing compressibility and density.

Section (1) focuses on how a material’s effective density and compressibility affect the

magnitude and direction of wave propagation. Section (2) introduces the concept of the

Dirac cone and Dirac point from the perspective of condensed matter physics. Section (3)

reveals how the Dirac-like cone in acoustics relates to the Dirac cone in condensed matter

physics. Section (4) describes the dimensions of the DZ AMM, and section (5) presents the

FEM replication. Finally, section (6) offers a larger perspective and a sample implementation

of DZ AMMs.

1 Introduction

The phase speed of a material is given by cphase “ ˘pχρq
´1{2, where χ is the compressibility

and ρ is the density; engineering materials that explore the limits of cphase thus requires

knowledge of these parameters.2 Since this work focuses on the cphase Ñ `8 limit, con-

straints on the corresponding compressibility and density are derived.

A progressive plane pressure wave that propagates at the desired cphase is given by
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ppx, tq “ p exp jpωt´ k ¨ xq (1)

The intensity of this progressive plane wave is I “ InE, where nE is a unit vector pointing in

the direction that the intensity propagates. Assuming a complex wave vector, k “ k1 ´ jα,

where k1 “ ω

|cphase|nphase, nphase is a unit vector pointing in the direction of propagation, and

α is the attenuation coefficient, then waves obeying cphase Ñ `8 ą 0 will satisfy3

k1 ¨ I ą 0 ùñ
ω∣∣cphase∣∣nphase ¨ InE ą 0 (2)

Now denoting the velocity as v, consider the conservation of linear momentum,4

∇p “ ´ρ ¨ 9v (3)

Upon substitution of equation (1), equation (3) becomes

jkp “ jωρv ùñ v “
k

ωρ
p

Recalling that the intensity is given in terms of pressure and velocity by5 I “ 1
2
Reppv˚q, the

intensity can now be found as a function of the pressure:

I “
1

2
|p|2 Re

ˆ

k

ωρ

˙

(4)

Combining equations (2) and (4) gives the inequality

˜

ω∣∣cphase∣∣nphase

¸˜

1

2
|p|2 Re

ˆ

k

ωρ

˙

¸

ą 0 (5)

Since k and α are parallel for so-called homogeneous waves, nphase ¨ k “ k “ ω

|cphase| . Then,

equation (5) becomes

|p|2

2
∣∣cphase∣∣2

ˆ

ω

ρ

˙

ą 0 (6)
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Since |p|2,
∣∣cphase∣∣, and ω are positive quantities, ρ ą 0; since cphase “ pχρq

´1{2 must be a real

quantity, χ ą 0, too. Further noting that cphase Ñ 8 as χρ vanishes,

χ, ρÑ 0`,

hence “double-zero” metamaterials. Note that the χ Ñ 0˘, ρ Ñ 0¯ limits correspond to

an infinite imaginary phase speed and hence evanescent wave propagation, and that the

χ, ρÑ 0´, limit corresponds to a negative infinite phase speed.

It is also possible to achieve infinite phase speed for so-called “single-zero” metamaterials,

in which χ (ρ) vanishes while ρ (χ) is finite. However, such metamaterials have little practical

value. To see why, note that the impedance of a plane wave in the single-zero metamaterial

is Z “ ρc. Upon substitution of c “ pχρq´1{2,

Z “

c

ρ

χ

Evidently, the impedance is infinite (zero) when χ (ρ) vanishes while ρ (χ) is finite. Suppose

an plane pressure wave traveling in a waveguide experiencing an impedance Zwg is incident

on this metamaterial. The transmission coefficient is then6

T “
2Z

Z ` Zwg

“

$

’

’

&

’

’

%

2, Z Ñ 8 ùñ R “ ´1

0, Z Ñ 0 ùñ R “ 1

where R is the pressure reflection coefficient. So for single-zero metamaterials, the incident

sound is totally reflected, either out-of-phase (when χ vanishes and ρ is finite) or in-phase

(when χ is finite and ρ vanishes). In either case, single-zero metamaterials reflect the inci-

dent sound field due to this so-called “impedance mismatch” with the background material,

making their properties hard to measure. DZ AMMs do not have this problem.7
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2 Inspiration from condensed matter physics

The realization of a double-zero AMM draws on the earlier-realized double-zero photonic

crystal. Photons obey8

µε
B2E

Bt2
´∇2E “ 0 (7)

The solution E to this 3D wave equation travels at cphase “ ˘pµεq´1{2. Just as cphase “

pχρq´1{2 Ñ 8 for χ, ρÑ 0`, cphase Ñ 8 for µ, εÑ 0`.

Huang et al., whose approach for a DZ photonic crystal is adopted by Dubois et al., note

that a Dirac cone that occurs at at the Brilloiun zone (BZ) edge “cannot be mapped to a

zero-refractive-index system.”9 Instead, effective-zero properties can be realized by a Dirac

cone at the Γ point (k “ 0), the BZ center. Achieving a Dirac cone at the Γ point, which

requires the crossing of two locally linear dispersions, is difficult, however, because dispersion

relations at the BZ center are generally quadratic.

One of Hamilton’s equations, BH
Bp
“ dr

dt
, constrains the effective parameters for a linear

dispersion relation in a photonic system. Interpreting dr
dt

as the group velocity vgroup of a

wave packet and writing p “ ~q,10 Hamilton’s equation becomes11

vgroup “
1

~
∇qE

Taking the time derivative of the group velocity gives the group acceleration, a. Switching

to index notation,

aα “
dvgroup,α

dt
“

1

~
d

dt

ˆ

BEpqq

Bqα

˙

“
1

~
ÿ

β

Bqβ
Bt

B

Bqβ

ˆ

BEpqq

Bqα

˙

“
1

~2
ÿ

β

Fβ
B2Epqq

BqβBqα
(group acceleration)

4



where the chain rule is used in the second line, Newton’s second law is used in the third line,

and where Fβ are components of the force. Recongnizing the (group acceleration) to be of

the form a “ F {m, we identify the effective mass in terms of its reciprocal:

1

mβα

“
1

~2
B2Epqq

BqβBqα
(8)

Apparently, the curvature of the dispersion relation Epqq is proportional to the inverse of the

elements of the mass matrix. Specifically, for the dispersion relation Epqq to be linear, BEpqq
Bq

is a constant, so the effective mass goes to 0. This constraint, along with the relativistic

constraint of infinite phase speeds and the quantum mechanical constraint of ~ ‰ 0, suggests

that a photonic system featuring linear dispersions is governed by a massless, relativistic,

and quantum mechanical equation.12 The massless Dirac equation satisfies these limits:13

¨

˚

˝

0 ´j
´

B

Bx
´ j B

By

¯

´j
´

B

Bx
` j B

By

¯

0

˛

‹

‚

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

“ kpωq

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

(massless Dirac equation)

Since we are interested in a linear dispersion, we Taylor expand the eigenvalues of the

(massless Dirac equation) about the Dirac frequency ωD:

kpωq “ kpωDq ` pω ´ ωDq
Bk

Bω

∣∣∣∣
ω“ωD

`Opω2
q

Note that kpωDq “
2πfD
cphase

“ 0 because the phase speed is infinite at the Dirac point, and that

Bk
Bω

∣∣∣∣
ω“ωD

“ 1{vgroup. Then the (massless Dirac equation) becomes

¨

˚

˝

0 ´jvgroup

´

B

Bx
´ j B

By

¯

´jvgroup

´

B

Bx
` j B

By

¯

0

˛

‹

‚

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

“ pω ´ ωDq

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

(9)

and the eigenvalues become

ω ´ ωD “ ˘vgroupkpωq `Opk2q (10)
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The two eigenfunctions that correspond to these frequencies have linear dispersions and

opposite group velocities. Section (3) shows that the DZ AMM obeys a 3 ˆ 3 eigenvalue

problem, two eigenvalues of which have the same leading linear term as equation (10).

To transition to the next section, a comparison is drawn between the parameters that

give rise to the Dirac cone in condensed matter physics and the Dirac-like cone in acoustics:

Condensed matter physics Acoustics

Classical wave equation µεB
2E
Bt2
´∇2E “ 0 χρB

2p
Bt2
´∇2p “ 0

Double-zero parameters µ, ε χ, ρ

Dispersion relation Epqq ωpkq

Number of eigenvalues 2 3

Effectively massless 3 3

Relativistic 3 7

Quantum mechanical 3 7

3 Multiple Scattering Theory

Scattering theory is used to derive an eigenvalue equation analogous to equation (9). Since

the scattering objects are roughly on the order of a wavelength, Mie scattering is used, which

solves the Helmholtz equation in spherical coordinates by separation-of-variables. Huang et

al. calculate the coefficients that determine the scattered field amplitudes bmpiq using P.C.

Waterman’s T-matrix technique, which reduces Mie scattering to14

bmpiq “ Dmpiq
ÿ

j‰i

ÿ

n

Gmnpi, jqbnpjq (11)

Equation (11) gives the Mie scattering coefficients bmpiq in terms of the T-matrix coefficients

Dmpiq. Gmnpi, jq are the elements of the matrix that transforms a scattered wave having

an angular momentum number n for the jth scatterer into an incident wave having angular

momentum number m for the ith scatterer. The index m is the angular momentum number;

specifically, m “ 0 corresponds to the monopolar mode, and m “ ˘1 corresponds to the

dipolar mode. Invoking Bloch’s theorem,15 bmpiq “ bme
ik¨Ri , equation (11) becomes
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bm “ Dm

ÿ

n

Sn´mp´1qn´mbn (12)

where Sn´m is the lattice sum. Sn is given by Huang et al. in reciprocal space in terms of

the 2D unit cell area Ω, the spacing between nearest neighbors rm, Bessel functions of the

first kind Jα, and Hankel functions of the first kind Hp1q:

Sn “
4in`1k0

Ω

ÿ

Gi

Jn`1pkGi
rmq

Jn`1pk0rmq

einφGi

kGi
pk20 ´ k

2
Gi
q
´
H
p1q
1 pk0rmq ` 2i{pπk0rmq

J1pk0rmq
δn0 (13)

Limiting ourselves to the subspace spanned by monopolar (m “ 0) and dipolar (m “ ˘1)

modes, equation 12 becomes

¨

˚

˚

˚

˚

˝

S0 ´ 1{D´1 ´S1 S2

´S1 S0 ´ 1{D0 ´S1

S´2 ´S´1 S0 ´ 1{D1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

b´1

b0

b1

˛

‹

‹

‹

‹

‚

“ 0 (14)

Since S´m “ ´S
˚
m, the matrix above is anti-Hermitian, similar to the Dirac operator. Fur-

ther, by cylindrical symmetry, D1 “ D´1 at the Γ-point.

Since a dispersion relation near the Γ-point is desired, a small wavenumber Taylor-

expansion for the matrix elements S0 ´ 1{D0, S0 ´ 1{D˘1, S˘1, and S˘2 is taken. Leaving

the Taylor expansions of equation (13) to the Supplementary Information of the Huang et

al. paper, the results are written in terms of functions A0pωq, A1pωq, Bpωq, C1pωq, and

C2pω, φkq:

S0 ´ 1{D0 » ipA0pωq `Bpωqδk
2
q (Small wavenumber eqs.)

S0 ´ 1{D˘1 » ipA1pωq `Bpωqδk
2
q

S1 » C1pωqδke
iφk

S2 » C2pω, φkqδk
2

Note that at the Γ-point, δk “ 0, which means that S˘1 “ S˘2 “ 0. Then the off-diagonal

elements in equation (14) vanish, giving independent equations:
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¨

˚

˚

˚

˚

˝

S0 ´ 1{D´1 0 0

0 S0 ´ 1{D0 0

0 0 S0 ´ 1{D1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

b´1

b0

b1

˛

‹

‹

‹

‹

‚

“ 0 (15)

For non-trivial (non-quiet) solutions, these three equations imply

S0 ´ 1{D´1 “ 0

S0 ´ 1{D0 “ 0

S0 ´ 1{D1 “ 0

Since D1 “ D´1 at the Γ-point, the first and third equations above are equivalent; solving

either for frequency gives the dipolar eigenfrequency ωd. Meanwhile, the second equation for

frequency gives the monopolar eigenfrequency ωm.

3.1 The general case: ωm ‰ ωd

A small ω Taylor expansion is taken of the first and third small wavenumber equations about

ωd and of the second equation about ωm:

S0 ´ 1{D0 » i
´

BA0

Bω
pω ´ ωmq `Bpωqδk

2
¯

S0 ´ 1{D˘1 » iA1pωq

Substituting the above, as well as S1 » C1δke
iφk and S2 » C2δk

2, into equation (14),

¨

˚

˚

˚

˚

˝

iA1 ´C1δke
iφk C2δk

2

C1δke
iφk ipBA0

Bω
pω ´ ωmq `Bδk

2q ´C1δke
iφk

´C˚2 δk
2 C1δke

´iφk iA1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

b´1

b0

b1

˛

‹

‹

‹

‹

‚

“ 0 (16)

Since the region of interest is for small ω, the functions BA0

Bω
, A1, B, C1, and C2 are now

treated as constant coefficients. Equation (16) has nontrivial solutions when the determinant
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of the 3 ˆ 3 matrix vanishes. Evaluating the determinant gives the characteristic equation

BA0

Bω
pω ´ ωmq `Bδk

2 “ 0, which is the dispersion relation for the monopolar band.

Similarly, performing a small ω approximation of the the (Small wavenumber equations)

near ωd,

S0 ´ 1{D˘1 » i
´

BA1

Bω
pω ´ ωdq `Bpωqδk

2
¯

S0 ´ 1{D0 » iA0pωq

Substituting the above, as well as S1 » C1δke
iφk and S2 » C2δk

2, into equation (14),

¨

˚

˚

˚

˚

˝

ipBA1

Bω
pω ´ ωdq `Bδk

2q ´C1δke
iφk C2δk

2

C1δke
iφk iA0 ´C1δke

iφk

´C˚2 δk
2 C1δke

´iφk ipBA1

Bω
pω ´ ωdq

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

b´1

b0

b1

˛

‹

‹

‹

‹

‚

“ 0 (17)

Equation (17) has nontrivial solutions when the determinant of the 3 ˆ 3 matrix vanishes.

Evaluating the determinant gives the characteristic equation BA1

Bω
pω´ωmq`Bδk

2 “ 0, which

is the dispersion relation for the dipolar band.

Note that for ωm ‰ ωd both monopolar and dipolar bands are quadratic in wavenumber.

That is, a Dirac-like cone and an associated Dirac point does not exist at the Γ-point if

ωm ‰ ωd.

3.2 The case of accidental degeneracy: ωm “ ωd ” ωD

The process is repeated for the case of accidental degeneracy. Performing a small ω approx-

imation of the (Small wavenumber equations) near ωD,

S0 ´ 1{D0 » i
´

BA0

Bω
pω ´ ωDq `Bpωqδk

2
¯

S0 ´ 1{D˘1 » i
´

BA1

Bω
pω ´ ωDq `Bpωqδk

2
¯

Substituting the above, as well as S1 » C1δke
iφk and S2 » C2δk

2, into equation (14),
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¨

˚

˚

˚

˚

˝

i
´

BA1
Bω pω ´ ωDq `Bδk

2
¯

´C1δke
iφk C2δk

2

C1δke
iφk i

´

BA1
Bω pω ´ ωDq `Bpωqδk

2
¯

´C1δke
iφk

´C˚2 δk
2 C1δke

´iφk i
´

BA1
Bω pω ´ ωDq `Bδk

2
¯

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

b´1

b0

b1

˛

‹

‹

‹

‹

‚

“ 0

(18)

As before, equation (18) has nontrivial solutions when the determinant of the 3 ˆ 3 matrix

vanishes. Notating ω ´ ωD “ δω and evaluating the determinant gives following cubic

equation:

´

´

BA1

Bω
δω `Bδk2

¯2 ´
BA0

Bω
δω `Bδk2

¯

`

` 2
´

BA1

Bω
`Bδk2

¯

C2
1δk

2
`

´

BA1

Bω
δω `Bδk2

¯

|C2|2 δk4 ´ 2 Im pC˚2 e
2iφkqC

2
1δk

4
“ 0

Noting that vgroup “
?
2|C1|

c

BA1

Bω
BA0

Bω

, the three solutions of the cubic equation are

ω1 ´ ωD “ 0`Opδk2q

ω2,3 ´ ωD “ ˘vgroupδk `Opδk2q

In contrast to the quadratic dispersion relations near the Γ-point found in section (3.1),

the accidental degeneracy of the monopolar and dipolar modes forces these dispersions to

be linear and cross at a point. Also note that the Dispersion corresponding to the dipolar

modes is of the same form as equation (10), the dispersion predicted by the massless Dirac

equation.

4 Dimensions of the double-zero acoustic metamaterial

The appropriate dimensions for the cylindrical scatterers and the square lattice can be found

using equation (13), which includes Ω, the area of the cylindrical scatterers, and rm, the
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Rigid walls of waveguide

h

ppzq “ fpkzzq “ fpkzz ˘ nπq

x

z
Axis of antisymmetry

Figure 1: This schematic shows the standing-wave profile of the lowest-order waveguide

mode.

spacing between nearest neighbors. The diamater of the cylindrical scatterers is 2
a

Ω{π,

and the square unit cell side length is rm. The thickness of the waveguide and height of the

cylindrical scatterers is arbitrary, as long as the chosen thickness and height of the scatterers

are such that the operating frequency lies within only one waveguide mode. The frequencies

used by Dubois et al. indeed lie within the lowest-order waveguide mode.16

Note that the pressure amplitude attains a maximum at the walls of the waveguide

because they are rigid. The lowest-order pressure mode along the z-axis is therefore a

function ppzq that is anti-symmetric about the waveguide’s center, as shown in figure (1).

Any antisymmetric function with spatial periodicity kz “
π
h

satisfies the boundary conditions.

Noting in the quasi-2D geometry that k2 “ ω2

c20
“ k2x ` k

2
z , where c0 “ 343 m/s,

kx “
ω

c
“
a

k2 ´ k2z “

d

ω2

c20
´
π2

h2
(19)

Note that kx is real for ω
c
ě π

h
, so the cut-on frequency of the first-order waveguide mode is

fcut-on, 1 “
c0
2h
“

$

’

’

&

’

’

%

17150 Hz, h “ 10 mm

12250 Hz, h “ 14 mm

Meanwhile, the second-order waveguide mode corresponds to a spatial periodicity of kz “
2π
h

,

so the corresponding cut-on frequency for this mode is
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fcut-on, 2 “
c0
h
“

$

’

’

&

’

’

%

34300 Hz, h “ 10 mm

24500 Hz, h “ 14 mm

The FEM sweeps 0 - 20 kHz and therefore operates in the first waveguide mode.17

5 FEM replication

5.1 Replica of Dubois et al. geometry

Dubois et al. gave the following dimensions for their geometry:

Parameter Dimension (mm)

Diameter of cylindrical scatterers 16

Waveguide thickness 10

Height of cylindrical scatterers 14.5

Square unit cell side length 30

Figure (2) shows the replication of the unit cell geometry defined by Dubois et al. The unit

cell was designed in SolidWorks and was imported into COMSOL for a pressure acoustics

(frequency domain) study. Acrylic plastic was chosen as the material for the unit cell,

matching the specifications of Dubois et al..

5.2 Band diagram

After applying a physics-controlled mesh to the unit cell and setting the element size set

to “fine,” an series of eigenfrequency studies were run. The first study found the eigenfre-

quencies at the Γ-point, and subsequent studies found the eigenfrequencies for wavenumbers

Γ to M, Γ to X, and X to M. The data was exported and processed in MATLAB, where

the solutions were “patched” together and plotted on a frequency versus k band diagram

to match figure 2(a) from the Dubois et al. paper. The Γ-point (k = 0) is the so-called

“Brillouin zone center” and is therefore set at the center of the band diagram.
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Figure 2: This figure shows the geometry of the unit cell, created in SolidWorks and then

imported to COMSOL.

Figure 3: Above is the calculated band diagram, with data generated in COMSOL and

patched together in MATLAB. The Dirac point occurs at the BZ center (the Γ point) at

1.87 ˚ 104 Hz.
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(a) Monopolar pressure field (b) Dipolar pressure field

Figure 4: Above are the pressure fields calculated in COMSOL at the Dirac point of the

degenerate monopolar and dipolar modes of the lowest-order waveguide mode

The Dirac-like cone occurs at the Γ-point for the frequency 1.87 ˚ 104 Hz, as reported in the

original paper. Visually comparing figure (3) above to figure 2a of the Dubois et al. paper

reveals a strong agreement of the results. The only apparent difference is due to the fact

that Dubois et al. presented the band diagram for frequencies 0 - 2 ˚ 104 Hz, while the band

diagram above sweeps frequencies 0 - 2.5 ˚ 104 Hz.

Figure (4) shows the pressure maps generated in COMSOL of the monopolar and dipolar

modes on the unit cell. These figures match Dubois et al.’s figures 2c and 2d.

6 Future Directions

6.1 Engineering

Since the phase speed in a DZ AMM is infinite, wavefronts within these materials do not

accumulate phases and therefore overcome diffraction. The effect is that sound can remain

highly columnated within the AMM. There are ways to achieve the same effect in nonlinear

acoustics (for example, a parametric array); what makes the DZ AMM remarkable is that this

columnation is achieved in the linear regime. Further, the dimensions of the DZ AMM can

be scaled to achieve columnated sound at any frequency, while the nonlinear technologies

operate best at low frequencies (as they often involve the subtraction tones of two high
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frequencies).

One downside to DZ AMMs is that sound columnation is achieved at only one frequency,

in contrast with nonlinear technologies like parametric arrays, whose transduction mecha-

nism easily accommodates real-time frequency modulation. Applications of DZ AMMs are

therefore inherently monochromatic. Fortunately, many acoustical applications are realized

in the narrow band, including transformation acoustics, wavefront and dispersion engineer-

ing, phase matching, ultrasound medical imaging, and underwater communication, according

to Dubois et al.

6.2 Physics research

Wang et al. describe how optical analogs are easier to work with than electronic systems:

“Compare[d] with solids, optical systems offer a clean and easily controlled way to test

theoretical predictions...[T]herefore establishing the optical analog of graphene wold open

up the possibility to study condensed matter analogies in an optical way.” Acoustics shares

this ease of experiment and can serve the same purpose. Sensitive experiments assessing the

dispersive properties of graphene and other condensed-matter materials hosting Dirac cones

can indirectly be carried out using DZ AMMs.
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currents, read ∇ ¨ E “ 0,∇ ¨ B “ 0,∇ ˆ E “ ´BB
Bt
, and ∇ ˆ B “ µεBE

Bt
. These four

first-order equations can be combined into two second-order coupled PDEs by first taking

the curl of the curl equations:

∇ˆ∇ˆE “ ´∇ˆ BB
Bt

∇ˆ∇ˆB “ µε
´

∇ˆ BE
Bt

¯

Applying the identity ∇ˆ∇ˆ P “∇ p∇ ¨ P q ´∇2P the left-hand-side becomes
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∇ p∇ ¨Eq ´∇2E “ ´∇ˆ BB
Bt

∇ p∇ ¨Bq ´∇2B “ µε
´

∇ˆ BE
Bt

¯

But invoking the divergence equations gives

∇2E “∇ˆ BB
Bt

´∇2B “ µε
´

∇ˆ BE
Bt

¯

We can simplify further, noting that

∇ˆ BB
Bt
“ B

Bt
p∇ˆBq

“ µεB
2E
Bt2

and

∇ˆ BE
Bt
“ B

Bt
p∇ˆ Eq

“ ´B
2B
Bt2

The vector Laplacian equations then become

µεB
2E
Bt2
´∇2E “ 0

µεB
2B
Bt2
´∇2B “ 0

17



9Huang, X., Lai, Y., Hang, Z. H., Zheng, H. Chan, C. T. Dirac cones induced by

accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater.

10, 582–586 (2011).

10q is the so-called “crystal momentum.”

11We have assumed that the Hamiltonian equals the total energy, i.e., that the fields are

conservative. Dimensionally, our result makes sense: ~ is in Joule-seconds, the gradient with

respect to the wave vector factors in meters, and energy is in Joules. The dimensions of

1
~∇qE is therefore rJ´1 ¨ s´1srmsrJs “ rm{ss, which are the SI units of velocity.

12Wang, L., Wang, Z., Zhang, J. et al. Realization of Dirac point with double cones in

optics Optics Letters, 34, 2009.

13The massless Dirac equation can be formulated by first taking the Fourier transform of

equation (7). Note that we are assuming polarity in the z-direction to make the analogy to

the acoustical system in the Dubois et al. paper more direct.

´

B2

Bx2
` B2

By2

¯

Ezpx, y, ωq ` k
2
pωqEzpx, y, ωq “ 0 (20)

Recall that the x- and y-Pauli spin matrices are

σx “

¨

˚

˝

0 1

1 0

˛

‹

‚

σy “

¨

˚

˝

0 ´j

j 0

˛

‹

‚

The Laplacian is factored in the style of P.A.M. Dirac. The Laplacian in the spin-1
2

basis

equals Dirac’s factored Laplacian:
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´

B2

Bx2
` B2

By2

¯

1
?
“

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

“

¨

˚

˝

0 1

1 0

˛

‹

‚

¨

˚

˝

0 1

1 0

˛

‹

‚

B2

B2x
`

¨

˚

˝

0 1

1 0

˛

‹

‚

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B2

BxBy
`

`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

¨

˚

˝

0 1

1 0

˛

‹

‚

B2

BxBy
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B2

B2y

“

¨

˚

˝

1 0

0 1

˛

‹

‚

B2

B2x
`

¨

˚

˝

j 0

0 ´j

˛

‹

‚

B2

BxBy
`

¨

˚

˝

´j 0

0 j

˛

‹

‚

B2

BxBy
`

¨

˚

˝

1 0

0 1

˛

‹

‚

B2

B2y

“

¨

˚

˝

1 0

0 1

˛

‹

‚

B2

B2x
`

¨

˚

˝

1 0

0 1

˛

‹

‚

B2

B2y
(3)

Therefore

´

B2

Bx2
` B2

By2

¯

1 “

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

Equation (20) then becomes

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

¨

˚

˚

˝

¨

˚

˝

0 1

1 0

˛

‹

‚

B

Bx
`

¨

˚

˝

0 ´j

j 0

˛

‹

‚

B

By

˛

‹

‹

‚

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

“ ´k2pωq

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

Since each of the matrix operators above (so-called “Dirac operators”) is a functional square

19



root of the Laplacian, each one generates an eigenvalue of
a

´k2pωq “ jkpωq. Taking the

functional square root of the above gives

1

j

¨

˚

˝

0 B

Bx
´ j B

By

B

Bx
` j B

By
0

˛

‹

‚

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

“ kpωq

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

¨

˚

˝

0 ´j
´

B

Bx
´ j B

By

¯

´j
´

B

Bx
` j B

By

¯

0

˛

‹

‚

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

“ kpωq

¨

˚

˝

Ez,1

Ez,2

˛

‹

‚

(massless Dirac equation)

14Adapted from the Supplementary Information of the Huang et al. paper.

15In this section, we will switch to the eipkx´ωtq convention to match the paper by Huang

et al.. The final result is entirely real, so comparison to the results in the previous section

should be straightforward.

16The supplementary information includes important derivations and details about the

experiment.

17Solving ω
c
“

b

ω2

c20
´ π2

h2
for c, the phase speed of the lowest-order waveguide mode,

c “
ω

kx
“

¨

˝

d

1

c20
´

π2

ω2h2

˛

‚

´1

(Dubois et al. equation 1)

This note was included for the sake of reproducing the only equation that appears in the

Dubois et al. paper.
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