
Differential operators in curvilinear coordinates February 6, 2026

Chapters 10 and 11 of Blackstock’s Fundamental of Physical Acoustics begin with the acoustic
wave equation in spherical and cylindrical coordinates, respectively [1, pp. 335, 386]. But where do
the expressions of the Laplacian in spherical and cylindrical coordinates come from? Let us derive
∇, ∇·, and ∇2 in cylindrical and spherical coordinates.∗ This worksheet is based on Secs. 10.8 and
10.9 of Ref. 2. For another treatment, see Ref. 3.

Example Cartesian coordinates (𝑥, 𝑦, 𝑧) are related to cylindrical coordinates (𝑟, 𝜃, 𝑧) by

𝑥 = 𝑟 cos 𝜃 (1a)
𝑦 = 𝑟 sin 𝜃 (1b)
𝑧 = 𝑧. (1c)

Use Eqs. (1) to calculate the differentials 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 in cylindrical coordinates:

𝑑𝑥 =
𝜕𝑥

𝜕𝑟
𝑑𝑟 + 𝜕𝑥

𝜕𝜃
𝑑𝜃 = (2a)

𝑑𝑦 = (2b)

𝑑𝑧 = (2c)

Use Eqs. (2) to calculate

𝑑𝑠2 = 𝑑s · 𝑑s = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = (3)

∗I was originally planning on also deriving ∇×, but we will not have time for it. I can send the derivation via email
to those who are interested.
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Since the coordinates are orthogonal, the vector 𝑑s can be identified from Eq. (3) as

𝑑s = e𝑟𝑑𝑟 + e𝜃𝑟𝑑𝜃 + e𝑧𝑑𝑧, (4)

where e𝑟 , e𝜃 , and e𝑧 are the cylindrical unit vectors. Insert Eqs. (2) into

𝑑s = e𝑥𝑑𝑥 + e𝑦𝑑𝑦 + e𝑧𝑑𝑧, (5)

and compare the result to Eq. (4) to show that

e𝑟 = e𝑥 cos 𝜃 + e𝑦 sin 𝜃 ≡ a𝑟 (6a)
𝑟e𝜃 = −e𝑥𝑟 sin 𝜃 + e𝑦𝑟 cos 𝜃 ≡ a𝜃 (6b)

e𝑧 = e𝑧 ≡ a𝑧 . (6c)
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Formulas for calculating 𝑑s and the basis vectors a𝑛

Given three coordinates 𝑥1, 𝑥2, and 𝑥3, the general form of Eq. (4) is

𝑑s = e𝑥𝑑𝑥 + e𝑦𝑑𝑦 + e𝑧𝑑𝑧

= e𝑥
𝜕𝑥

𝜕𝑥𝑛
𝑑𝑥𝑛 + e𝑦

𝜕𝑦

𝜕𝑥𝑛
𝑑𝑥𝑛 + e𝑥

𝜕𝑧

𝜕𝑥𝑛
𝑑𝑥𝑛

= a1𝑑𝑥1 + a2𝑑𝑥2 + a3𝑑𝑥3 = a𝑛𝑑𝑥𝑛 (7)

where the general form of Eqs. (6) is

a𝑛 = e𝑥
𝜕𝑥

𝜕𝑥𝑛
+ e𝑦

𝜕𝑦

𝜕𝑥𝑛
+ e𝑧

𝜕𝑧

𝜕𝑥𝑛
(8)

Define 𝑔𝑖 𝑗 = a𝑖 · a 𝑗 . The general form of Eq. (3) is then

𝑑𝑠2 =
(
𝑑𝑥1 𝑑𝑥2 𝑑𝑥3

) ©­«
𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

ª®¬ ©­«
𝑑𝑥1
𝑑𝑥2
𝑑𝑥3

ª®¬ . (9)

In index notation, Eq. (9) reads 𝑑𝑠2 = 𝑔𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 , and if the coordinate system is orthogonal,
Eqs. (7) and (9) become

𝑑s = e1ℎ1𝑑𝑥1 + e2ℎ2𝑑𝑥2 + e3ℎ3𝑑𝑥3 (10)

and

𝑑𝑠2 =
(
𝑑𝑥1 𝑑𝑥2 𝑑𝑥3

) ©­«
ℎ2

1 0 0
0 ℎ2

2 0
0 0 ℎ2

3

ª®¬ ©­«
𝑑𝑥1
𝑑𝑥2
𝑑𝑥3

ª®¬ , (11)

respectively, where ℎ1 =
√
𝑔11, ℎ2 =

√
𝑔22, and ℎ3 =

√
𝑔33 are the “scale factors.”

Example Given Eqs. (6), calculate the scale factors in cylindrical coordinates.
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Example Use Eqs. (7)–(11) to obtain 𝑑s, a𝑛, e𝑛, 𝑔𝑖 𝑗 , and 𝑑𝑠2 for spherical coordinates, which are
related to Cartesian coordinates by

𝑥 = 𝑟 sin 𝜃 cos 𝜙 (12)
𝑦 = 𝑟 sin 𝜃 sin 𝜙 (13)
𝑧 = 𝑟 cos 𝜃. (14)

Answers:

𝑑s = a𝑟𝑑𝑟 + a𝜃𝑑𝜃 + a𝜙𝑑𝜙

a𝑟 = sin 𝜃 cos 𝜙e𝑥 + sin 𝜃 sin 𝜙e𝑦 + cos 𝜃e𝑧 = e𝑟
a𝜃 = 𝑟 cos 𝜃 cos 𝜙e𝑥 + 𝑟 cos 𝜃 sin 𝜙e𝑦 − 𝑟 sin 𝜃e𝑧 = 𝑟e𝜃
a𝜙 = −𝑟 sin 𝜃 sin 𝜙e𝑥 + 𝑟 sin 𝜃 cos 𝜙e𝑦 = 𝑟 sin 𝜃e𝜙
𝑔11 = 1, 𝑔22 = 𝑟2, 𝑔33 = 𝑟2 sin2 𝜃, 𝑔𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2
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Example Qualitatively, a partial derivative involves letting one variable vary while keeping the
other variables constant. Consider cylindrical coordinates (𝑟, 𝜃, 𝑧). From Eq. (4), a variation in
𝑟 with 𝜃 and 𝑧 held constant means that 𝑑𝑠 = 𝑑𝑟 . Similarly, holding 𝑟 and 𝑧 constant shows that
𝑑𝑠 = 𝑟𝑑𝜃, and holding the 𝑟 and 𝜃 constant shows that 𝑑𝑠 = 𝑑𝑧. The 𝑟 component of the gradient
of a function 𝑢 in cylindrical coordinates therefore equals e𝑟𝜕𝑢/𝜕𝑟. The 𝜃 component equals
e𝜃 (1/𝑟)𝜕𝑢/𝜕𝜃, and the 𝑧 component equals e𝑧𝜕𝑢/𝜕𝑧, i.e.,

∇𝑢 = e𝑟
𝜕𝑢

𝜕𝑟
+ e𝜃

1
𝑟

𝜕𝑢

𝜕𝜃
+ e𝑧

𝜕𝑢

𝜕𝑧
. (15)

Formula for gradient in general orthogonal coordinates

Consider a function 𝑢 = 𝑢(𝑥1, 𝑥2, 𝑥3) of the general orthogonal coordinates 𝑥1, 𝑥2, and 𝑥3. The
magnitude of the component of∇𝑢 in the direction of 𝑥1 (holding 𝑥2 and 𝑥3 constant) is 𝑑𝑢/𝑑𝑠,
where [from Eq. (10)] 𝑑𝑠 = ℎ1𝑑𝑥1. Thus 𝑑𝑢/𝑑𝑠 = (1/ℎ1)𝜕𝑢/𝜕𝑥1. Similarly, the components
of ∇𝑢 in the 𝑥2 and 𝑥3 directions are 𝑑𝑢/𝑑𝑠 = (1/ℎ2)𝜕𝑢/𝜕𝑥2 and 𝑑𝑢/𝑑𝑠 = (1/ℎ3)𝜕𝑢/𝜕𝑥3,
respectively. The gradient of u in general orthogonal coordinates is therefore

∇𝑢 = e1
1
ℎ1

𝜕𝑢

𝜕𝑥1
+ e2

1
ℎ2

𝜕𝑢

𝜕𝑥2
+ e3

1
ℎ3

𝜕𝑢

𝜕𝑥3

=

3∑︁
𝑖=1

e𝑖
1
ℎ𝑖

𝜕𝑢

𝜕𝑥𝑖
. (16)

Example Use Eq. (16) to write the gradient of a function 𝑢 = 𝑢(𝑟, 𝜃, 𝜙) in spherical coordinates
(𝑟, 𝜃, 𝜙). Note from the previous page that ℎ1 =

√
𝑔11 = 1, ℎ2 =

√
𝑔22 = 𝑟, and ℎ3 =

√
𝑔33 = 𝑟 sin 𝜃.

Answer:

∇𝑢 = e𝑟
𝜕𝑢

𝜕𝑟
+ e𝜃

1
𝑟

𝜕𝑢

𝜕𝜃
+ e𝜙

1
𝑟 sin 𝜃

𝜕𝑢

𝜕𝜙
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A prerequisite proof We need to first prove that

∇ ·
(

e3
ℎ1ℎ2

)
= 0, ∇ ·

(
e2
ℎ1ℎ3

)
= 0, ∇ ·

(
e1
ℎ2ℎ3

)
= 0. (17)

Recall the scale factors are not constants (they cannot be removed from the divergences). Letting
𝑢 = 𝑥1 in Eq. (16) shows that

∇𝑥1 = e1/ℎ1 (18)

because 𝜕𝑥1/𝜕𝑥2 = 𝜕𝑥1/𝜕𝑥3 = 0. Similarly,

∇𝑥2 = e2/ℎ2, ∇𝑥3 = e3/ℎ3. (19)

Since the coordinates are assumed to be orthogonal (and right-handed),

e1 × e2 = e3 (20)

Writing Eq. (20) in terms of Eqs. (18) and (19) yields

∇𝑥1 × ∇𝑥2 = e3/(ℎ1ℎ2). (21)

The divergence of Eq. (21) is†

∇ · (∇𝑥1 × ∇𝑥2) = ∇𝑥2 · (∇ × ∇𝑥1) − ∇𝑥1 · (∇ × ∇𝑥2)
= 0 = ∇ · [e3/(ℎ1ℎ2)] . (22)

where it has been noted in the second equality that ∇ × ∇ 𝑓 = 0. Equation (22) proves the first
of Eqs. (17). The second and third of Eqs. (17) are proved by applying the same procedure to
e2 × e3 = e1 and e3 × e1 = e2.

Formula for divergence in general orthogonal coordinates

To calculate the divergence of

v = e1𝑣1 + e2𝑣2 + e3𝑣3 (23)

in general orthogonal coordinates 𝑥1, 𝑥2, and 𝑥3, write Eq. (23) as

v =
e1
ℎ2ℎ3

(ℎ2ℎ3𝑣1) +
e2
ℎ1ℎ3

(ℎ1ℎ3𝑣2) +
e3
ℎ1ℎ2

(ℎ1ℎ2𝑣3). (24)

To calculate ∇ · v, consider the divergence of the first term of Eq. (24):a

∇ ·
[

e1
ℎ2ℎ3

(ℎ2ℎ3𝑣1)
]
=

e1
ℎ2ℎ3

· ∇(ℎ2ℎ3𝑣1) + ℎ2ℎ3𝑣1∇ ·
(

e1
ℎ2ℎ3

)
. (25)

†∇ · (u · v) = v · (∇ × u) − u · (∇ × v).
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Equation (17) shows that the second term on the right-hand side of Eq. (25) vanishes. Noting
that e1 · ∇ = (1/ℎ1)𝜕/𝜕𝑥1 allows Eq. (25) to be written as

∇ ·
[

e1
ℎ2ℎ3

(ℎ2ℎ3𝑣1)
]
=

1
ℎ1ℎ2ℎ3

𝜕

𝜕𝑥1
(ℎ2ℎ3𝑣1). (26)

Similarly, the divergence of the second and third terms of Eq. (23) can be expressed as

∇ ·
[

e2
ℎ1ℎ3

(ℎ1ℎ3𝑣2)
]
=

1
ℎ1ℎ2ℎ3

𝜕

𝜕𝑥2
(ℎ1ℎ3𝑣2), (27)

∇ ·
[

e3
ℎ1ℎ2

(ℎ1ℎ2𝑣1)
]
=

1
ℎ1ℎ2ℎ3

𝜕

𝜕𝑥3
(ℎ1ℎ2𝑣3), (28)

respectively. Combining Eqs. (26) and (27) shows that Eq. (23) equals

∇ · v =
1

ℎ1ℎ2ℎ3

[
𝜕

𝜕𝑥1
(ℎ2ℎ3𝑣1) +

𝜕

𝜕𝑥2
(ℎ1ℎ3𝑣2) +

𝜕

𝜕𝑥3
(ℎ1ℎ2𝑣3)

]
(29)

aThe identity ∇ · (𝜙v) = v · (∇𝜙) + 𝜙∇ · v has been used.

Example Write the divergence of v in cylindrical coordinates (ℎ1 = 1, ℎ2 = 𝑟, and ℎ3 = 1).

Example Write the divergence of v in spherical coordinates.
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Formula for the Laplacian in general orthogonal coordinates

The Laplacian is simply ∇2 = ∇ · ∇. Using Eqs. (16) to evaluate the divergence of Eq. (29)
yields

∇2𝑢 = ∇ ·
[
e1

1
ℎ1

𝜕𝑢

𝜕𝑥1
+ e2

1
ℎ2

𝜕𝑢

𝜕𝑥2
+ e3

1
ℎ3

𝜕𝑢

𝜕𝑥3

]
=

1
ℎ1ℎ2ℎ3

[
𝜕

𝜕𝑥1

(
ℎ2ℎ3
ℎ1

𝜕𝑢

𝜕𝑥1

)
+ 𝜕

𝜕𝑥2

(
ℎ1ℎ3
ℎ2

𝜕𝑢

𝜕𝑥2

)
+ 𝜕

𝜕𝑥3

(
ℎ1ℎ2
ℎ3

𝜕𝑢

𝜕𝑥3

)]
(30)

Example Write the Laplacian in cylindrical coordinates.

Example Write the Laplacian in spherical coordinates.
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Miscellaneous grad skill: Nondimensionalizing equations There are two main reasons to
nondimensionalize equations:

1. Dimensionless quantities reveals relationships that are obscured in dimensional equations.

2. Using normalized equations leads to more concise code. It is often unnecessary to enter
numerical values of density, sound speed, bulk modulus, etc. in your code.

For example, consider the axial pressure radiated by a baffled circular piston [4, Eq. 5.7.3]:‡

𝑝 = −2𝑖𝜌0𝑐0𝑢0 sin
[
𝑘 (𝑧2 + 𝑎2)1/2 − 𝑘𝑧

2

]
exp

{
𝑖𝑘 [𝑧 + (𝑧2 + 𝑎2)1/2]

2

}
. (31)

Nondimensionalize Eq. (31) by introducing the dimensionless quantities

𝑃 = 𝑝/𝜌0𝑐0𝑢0, 𝐾 = 𝑘𝑎, 𝑍 = 𝑧/𝑧𝑅 (32)

where 𝑧𝑅 = 𝑘𝑎2/2 is the Rayleigh distance. Show that the result can be written in the form

𝑃(𝑍) = −2𝑖 sin[𝜒−(𝑍)]𝑒𝑖𝜒+ (𝑍) ,

where

𝜒±(𝑍) = (𝐾/2)
[√︁

1 + (𝐾𝑍/2)2 ± 𝐾𝑍/2
]
.

‡See also Blackstock’s result [1, Chap. 13, Eq. (C-4)], but note that the equation contains a typo (see errata).
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Miscellaneous grad skill: Email etiquette

• Always start your emails with a greeting, even if it is a one-line reply in a longer conversation.
Emails are not texts, and addressing the recipient conveys respect and professional distance.

– For initial communication with a professional contact, use “Dear (name).”

– If the tone of the conversation becomes warmer, use “Hello (name).”

– For friendly conversation, use “Hi (name).”

– Do not start emails addressed to a person with just “Hi” (and no name). It sounds
disrespectful/apathetic. If you are writing to an anonymous recipient (like an office or
admin address), use “Good morning,” “Good afternoon,” or “Good evening.”

• Sign off with your first name even if you have an automated signature. It demonstrates respect
and feels more personal.

• Avoid contractions (isn’t, don’t, can’t, etc.) in professional emails.

• Be concise! Break up large walls of text into separate paragraphs.

Miscellaneous grad skill: Office/lab etiquette

• Return equipment to the third or fourth floor labs; return books to the sixth floor lab.

• Let’s maintain a quiet atmosphere to help each other achieve our academic goals.

• Try to restrict socializing to

– lunch

– entering/exiting the lab

– Friday meetings/research group meetings

– Student Chapter meeting or after seminar
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