Review for the nonlinear acoustics final

Chirag”
September 20, 2023

B ( These problems, based ) 8T W
" | on Dr.  Hamilton’s | .

lectures, address the
major topics of the |§
latter half of the|
course, corresponding | &
to HW6-HWS. Good
luck on the exam!

1 Rankine-Hugoniot relations

(a) Name the quantity that is conserved when f and g, as defined below,
are substituted into equation (1.1).

of dg
=+ 5 =0. (1.1)
f g

(i) p pu

(i) pu pu® + P

(iti) | 3pu” + pe | 5pu’ + pue + Pu

(i): Mass

op 0
[ g‘i‘a—x(w):o ]
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(ii): Momentum

(iii): Energy

0 (1 0 (1
§<§Pu2+p€>+%<§PU3+PU€+PU) =0

In summary, where equations references correspond to [2]:

- f g
mass (4-76) ) pu
momentum (4-77) ou pu? + P

energy (4-78) | spu” + pe | 3pu® + pue + Pu

Write equation (1.1) in integral form by integrating from z; to .
Write the result such that the quantity g(z1,t) — g(xs,t) appears on
one side of the equation. Call this quantity I.

Integrating equation (1.1) from z; to z gives

| s+ ot o) =0

Moving the gs to the other side gives

d [

I= It N f(:lf,t) - g(xlat) —g(:lig,t)

Let a discontinuity exist at xq,(¢) in the result from part (b). Split
the integral I from part (b) into I; + I5, to account for the disconti-
nuity. Use the notation x1 < xy, < x) < x2. Hint: the upper limit
of I should be x, and the lower limit of Iy should be x},, where
xﬁlzajshie, e — 0.



L = pm . f(x, t)dx
and
d ("2
I =— t)d
2 dt x;(t)f(xa ) x

(d) Evaluate the integrals I1 and I,. Hint: Note that for an arbitrary
function q(x,t),

vt dx* dx; v oq
— — T S i
il q(z,t)de = gz, ) —— — (@i, 1) —~ + 5 prce
Note that dx,(t)/dt = dxs(t)/dt = 0. Also, denote dx/dt = Ug,.
Using the rule suggested,

drg,

flay, t)— + —dx

da:l JISh 8f
dt ot

T

Noting that dz(t)/dt = 0 and denoting dz, /dt = Ush,

I = f(zg, t)Ush +f a—{dx
Similarly,
dxd dx Th O f
I = —f(zg,t) d;h + f(%ﬂf)d—; | gdﬁ
R
xsh a
b= —f(ehUa— | " Zdo

(e) Take the limit of I;, as found in the previous part, as z; — x.

Similarly, take the limit of I as 9 — z. Note that the integral

vanishes in both cases.



(h)

(1)

Taking the limits gives

.7)14>.’L'sh

[ lim I, = Ushf(x;wt) ]

and

.’132—>.’L’;;

[ lim I = —Usnf(zd,t) ]

Use the above result, as well as the result of part (b), to show that
as 11 — 2y and xy — x],

g(xs_hv t) o g(xgin t) = Ush[f(xs_h’ t) o f(x;in t)] (1'2>

From part (b), I = g(x1,t) — g(xs2,t). Taking the appropriate
limits and noting that lim, .- I = Usnf(zg,,t) and lim,, .+ I> =
—Usnf(z,t) gives the desired resulf,

9(@g; ) = g(xdn; 1) = Ushlf (g, 1) — fagh, t)]

Rewrite equation (1.2) by letting the subscript a correspond to “ahead
of the shock,” z}, and by letting the subscript b correspond to “be-
hind the shock,” .

[ 9 — 9o = Usn(fo — fa) ]

Write the above result using the jump notation, [¢] = ¢, — ¢..

| ld=Ualfl |

Define v = u — Uy, and use the table from part (a) to derive the
so-called Rankine-Hugoniot relations. Hint: for the conservation of



momentum and energy, some rearrangement is required. Just see
your notes.

For the conservation of mass,

[pu] = Usnlp).
Invoking the definition v = u — U gives

(0]

For the conservation of momentum,

[pu? + P = Usp[pu] .

After some rearrangement (see class notes):

[ [pv? + P] =0 ]

For the conservation of energy,

1 1
[—pu3 + pue + Pu] = Usp [—pu2 + pe] :

2 2
Defining h = e+ P/p = enthalpy per unit mass, one finds
1
|:§'U2 4 h] =0

What did we find in class to be the order of the entropy jump across
the shock, for an arbitrary fluid?

It was found that the order of the entropy jump across the
shock is O(e?).

What did we find in class to be the order of the reflection from the
shock front?

The reflection from the shock front is also O(e%).

What do the previous two parts imply about the shock at quadratic
order?

A shock at quadratic order is simple and isentropic.



2 Weak shock speed

(a) Denoting v = u—Ug, and ) = pu, use the Rankine-Hugoniot relation
[pv] = 0 to show that
Q]

U =25 (2.1)

By the conservation of mass, [pv] =0,

[pu — pUsp] =0
[pu] = [p]Usn
Solving for Uy, gives
lpu] _ Q]
T T

(b) Taylor expand [Q] in [p] to O(e?) and combine with equation (2.1)
to show that

U = Q)+ 5QU16] + O(). (2.2

/ 1 /"
Q) = Qi) + 5@ +O(e)
Combining with equation (2.1) gives

Ui = @ + 5@l + O(E)

(c) Noting that [Q'] = Q”[p] + O(€?) (the first-order Taylor expansion of
[Q'] in p), substitute Q7 into equation (2.2) to show that

/ 1 /
U = Qo + 51QT+ O(e) . (2:3)
Then write [Q'] = Q) — @, to write equation (2.3) as

U = 5(Q4 + Q5 +O(). 2.4



By inspection, Us, = Q) + 5(Q'] + O(¢?) .. Writing [Q'] = Q; — Q)
gives Ush = Q, +5(Q, — Q1) + O(¢*) =

1
Ush = 5(@& + Q) + O(€).

(d) Note that

d(pu du
=u-+tc
B 2
—u+co+ﬂu+(’)(e)
= ¢ + Pu, (2.5)

where the simple-wave relation du = %dp has been used. Combine
equation (2.5) with equation (2.4) to show that

Ug, = co + g(ua +up) + O(€%) . (2.6)
Substituting Q' = ¢y + Bu into Uy = 3(Q), + Q}) + O(€?) gives

Ush = %(Co + Bug + co + PBup) + O(€?) (2.7)

Rearranging gives the result

Ush = co + g(ua +up) + O(€?).

Energy dissipation at a shock front was very involved an is not included
in this review. See class notes for the derivation leading to dF/dt, which
is cubic in the pressure jump. d7'/dt is also cubic in the pressure jump.
See also the applications to HIFU discussed in class.



3 Landau’s equal-area rule

(a) Note that the area under a shock is given by

up
A:f (x — xgn)du . (3.1)
Write dA/dt using the rule
d [ duy, du, el
- Hdu = q(up, t)—2 — q(tg, t)— .
il q(u, t)du = qlup, t)—= — qlua, t)— = + L at

Hint: let ¢ above = x — xg,.

dA duy, du, Y lor  OTsh
T R Y f [5 "t ]d
(3.2)
(b) Noting that = = zy, at u = u, and u = wu;, show that
% = Lu [Z—f - d;;h} du. (3.3)

This is done by inspection. The first two terms on the RHS of
equation (3.2) are zero, giving the result.

(¢) Identify dz/dt in equation (3.3) to be the finite amplitude propaga-
tion speed, ¢y + Bu + O(€?), and identify dxg,/dt to be Uy, = co +
g(ua+ub)+(9(e2), by equation (2.6). Perform the integral in equation
(3.3) over u to show that dA/dt =0, i.e., A= constant = A, —A_.

dA .
e f [co + Bu — ¢y — g(ua + Ub)] du + O(€?)

L ot
— E[u% — ug — (ua + Ub) (Ub - Ua)]
5

:§[u%—u§+u3—u2]:0



The time derivative of A is 0, so A = constant. Since A =0 at
t=1t, A=A, + A_ for all time. The location of the shocks is
therefore determined by setting A_ = A,.

Blackstock’s weak-shock method

The retarded shock time is 7y, = tg, — x/cp. Calculate dry,/dx by
define the shock slowness to be 1/Ug, = dtg,/dx = [co+ g(uaJrub)]_l.
Answer:

drg

= 5o+ )+ O() (4.1
dTs d
dT:I:h dx gz tsh — /)

_ Lt 1

- Uswh

= lco + g(ua + )]t - clo + O(€?)

_1,_ B 1 2

= 60[1 e (g + up)] o + O(€%)

_ 262(ua+ub)+(’)( )

Using the linear impedance relationship, the speed of the shock
is written in terms of pressure:

deh _ B
dx 2,00 €0

55 (pa + ) + O(¢°) ]

From where are p, and p;, obtained?

po and p, are obtained from the approximate nonlinear lossless
solution discussed in the first half of the course,

(e (cb)

pOC()

p:f<¢)7 ¢=T

(4.2)




(¢) N-wave example: Use the Blackstock weak shock method to find
psh(x) for the boundary condition

) ot/ Ty, Jt] < Ty
ft) = {O, > T ) (4.3)

which is prescribed at x = 0,¢ = 7.

Po

— T, T
~T —T, T

First, replace ¢t with ¢ fo describe the waveform for |t| < T*

By equation (4.2), the phase of the implicit solution is

Bpo
O=T~— e
pociTh

Denoting b = Bpy/pociTy, the phase can be written as

¢ =T1—bro
Solving for ¢ gives

Then, the pressure solution is

{poT/To ‘T| <T,

1+bx

) 4.4
0, 7| > T (44)

p(x,7) =

It is desired to find psy(z). Note from the above that at the
head shock,

PoTsh/ 10 .
1+ bx (3)
and p,=0. (i)

Py =

10



_ poTsh/To

I+bz /‘\y’\‘

Po
Ty

Db =

T

— 7T —T,
pazo

7
—Po

Evidently, to find ps,(z), 7sn must be found. At the head shock,

7sh = —71'. Invoking equation (4.1) gives

dl’"
dr

dTSh
dx

Da 1 Db
2P0 0( )

- B potsh/To
 2pocd 14 ba
_LBpo T/Ts
2pocg 1+ b

b T

21+ b

Integrating the above gives 7' = A+/1 + bx.
r =0, A="T,. Therefore, equation (i) becomes

Po

P = e

5 Blackstock’s bridging function

Since T' = T, at

(4.5)

(a) From the development of the Fubini
pressure as a Fourier sine series P(o,

solution, which expands the
0) = Zn | Bn(0) sinnf, where

o = z/T and 0 = wr, it was found that the expansion coefficients

B,, are given by the sum Bq(ll) + B,?), where
9 0,o=m
BWY = —— cos(nb) sin(P) =0 (5.1)
nw 0,0=0
2 (*=T 2
BY = = cos nf cos Pdd = —J,,(no) (5.2)
T Jo—o no
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where ® = 0 + osin®. For ¢ < 1, why are the limits on ¢ and ®
above equal?

For o < 1, the two limits need to be assessed: (1) when 6 = 0, the
transcendental equation for ® is ® = osin®, for which ® = 0
is the only solution; and (2) when # = 7, the transcendental
equation for ® is & = 7 + osin®, for which & = 7 is the only
solution. Evidently, the limits on 8 and ® are the same. For
graphical solutions of the transcendental equation, see here.

For o > 1, what is ® when # = 77 What are the two possibilities for
® at # = 0?7 Noting that P,, = P, what is the correct choice for &7

® = 7 when 0 = 7 as before, but at 8§ = 0, & can either be 0
or ®g,. © = Py, is the correct choice because at that point, the
waveform is multivalued, and its physical value is Py, = P,.

Given how ® and 6 have different limits at 8§ = 0, how do equa-
tions (5.1) and (5.2) change for o > 1?7 (Qualitative answer is suffi-
cient...the math is a bit confusing)

Quualitatively, the upper limit on both ® and ¢ remain the same,
and the lower limit for 6 stays the same, but the lower limit for
¢ changes from 0 to P

Quantitatively, using the relations Py, = sin ®g, = sin(o sin gp) =
sin(o Pgn) and cos ®dP = (dP — db) /o,

BT(LD = 2 sin Qgp, = 2Fsh
nm nm
2 O=m 4
BY = _—_ cos nfdd — J cos nmdo
nmwo dq, 0
2 s

=— | cos[n(® — osinP)]dd

nmwo Pq,

Adding the two together gives the Blackstock bridging function.

12


http://cag170030.github.io/chirag/fubini.html

6 Nonlinearity in multiple dimensions

(a)

(c)

1D spreading is modeled by adding a term mp/r to the LHS of the
Burgers equation with no absorption, i.e., 6 = 0:

0 0
P ym,_ 0 (6.1)
or r pocy OT

where 7 is now t ¥ (r —1¢)/co. What is m for 1D spherical spreading?
What is m for 1D cylindrical spreading” What is some restrictions
on this formulation?

m = 1 for spherical spreading and m = 1/2 for cylindrical spread-
ing. The cylindrical case applies only for large kro. All of this
generally applies only to diverging waves.

T m
q=\—| P
To

and calculate dp/dr and dp/0T in terms of q.

Introduce

Writing p = (2)"¢ and taking the derivatives w.r.t. r gives

i—f) = —m(ro/r)" tror—2q + (ro/r)m:—,q, or
op m0q m (1 "
or (ro/7) or r \r 1

Meanwhile, taking the derivative with respect to 7 gives
P _(ro)"%
or \r ) or

Write equation (6.1) in terms of q. Answer:

%9 _ +<@)mﬁ@ (6.2)

or T \r /) pocor

13



Inserting the above-found derivatives and the definition of ¢ into
equation (6.1) gives

og  m(ro\"  m[re\" Bp (1) " dq
ro/r)"— — — | — + — — =+—_| = —.
(ro/7) or T(T) 4 T<T> q ,OOC§<7“) oT

Dividing by (ry/r)™ and canceling the second and third terms on
the LHS gives the desired result provided above.

(d) With the intention of getting rid of the factor of (rg/r)™ altogether
from equation (6.2), choose z(r) such that

0qg  Oqdz +(ro)m8q

or  Ozdr T \r) 0z

Integrate to find z for m = 1 and m = 1/2.

z:fdz: iJ (T—(/)) dr’
To /r.

[ 2 = +roIn(r/ro) ]

For m =1,

For m =1/2,

2=V |

(e) Write equation (6.1) in terms of the stretched coordinates ¢ and z.

%4 _ Pa %
0z poc ot

7 Radiation force

(a) What is the distinction between Eulerian and Lagrangian coordi-
nates?” Why does the distinction dissolve in linear theory?

14



Crudely put, Eulerian coordinates are fixed in space, while La-
grangian coordinates move with the particle. That is why Eulerian
coordinates are referred to as “spatial coordinates,” while La-
grangian coordinates are referred to as “material coordinates."
Eulerian coordinates can be intuitively thought of as sitting on
the bank of a river and watching a fallen leaf go by, and La-
grangian coordinates can be thought of as swimming alongside
the leaf in the river.

Let a be the position of a particle at rest, & be the displacement of
the particle from a, and x be the position of the displaced particle:

& = displacement of particle

o z(a,t) = a + £ (a,t)
= position of displaced particle

O

Then, the transformations between a Lagrangian quantity qp(a,t)
(can be a scalar, vector, or tensor) and Eulerian quantity ¢g(x,t)
are

QL(aa t) = QE(G’7 t) + £(a’7 t) ) VaQE(aﬂt) (71)
QE(ma t) = QL(mv t) - £(w7 t) ’ VwQL(m7 t) . (72)

Why can the coordinates in which the gradients in the above equa-
tions are evaluated be neglected?

Those corrections (V. vs V,) are discarded because they are of
higher order.

Resolve Westervelt’s paradox, which says that for X (t) = ugsin wt at
= X(t), ug = ugsin(wt — kx) and (ug) = —(u?)/cyg = —u/2cy. Do
so by calculating (uy,y in Lagrangian coordinates. Hint: use equation
(7.1).

Letting the quantity ¢ in ¢i(a,t) = gr(a,t) +&(a,t) - Vgr(a,t) be
the scalar particle velocity particle velocity u. Then,

dug(a,t)

wi(a,) = up(a,t) +€(a. ) LB

(7.3)

15



or in 1D,

d t
ur(a,t) = ug(a,t) + &(a, t)% , (7.4)
¢, the separation between positions a and x, can be found by
integrating ug over time: { = (updt = —“ cos(wr — kz). Also
note that %2 = —fugcos(wr — kz). Taking the time average of
ur, gives
2k
) = (ug) + == (cos” wr)
2 2
_u o,
260 2C0

The paradox is resolved: in the reference frame that moves with
the piston, there is no d.c. flow through the piston.

Calculate the mean excess pressure in Eulerian coordinates. Hint:
Start with the linearized momentum equation

PO oy +Vp=-VL (7.5)

where L = %p0u2 — p?/2poc3 is the Lagrangian (leave everything in
terms of L). Then let w = V¢, i.e., irrotational, and integrate over
volume. Call the constant of integration g(t) on the right-hand side.
Finally take the time average and call {g(t)) = C. Answer:

(pp) = —<(L)+C (7.6)

Letting u = V¢, the momentum equation becomes

0
v (poa—(f +p> =-VL (7.7)
By the gradient theorem,

op
Poay TP = —L+g(t)

Taking the time average gives

) = =L+ C

16



(e)

Calculate the mean excess pressure in Lagrangian coordinates by
using equation (7.1). Hint: After using equation (7.1), take the
time average, and use the momentum equation to write (& - Vp) =
—po{€ - Ou/dty. Further note that one can write 0°€/0t* as 20€/0t -
0& /0t + 2€ - 0*€/0t%. Answer:

{pL) = {pE) + po{u’) (7.8)

By equation (7.1),

pL=pE+& - Vp

Taking the time average,

{pL) = {pr) + <& Vp) (7.9)

Now use the hint, (§ - Vp) = —py(§ - 0u/dt). By the definition of
u = &, this quantity can be written as —py (& - 02€/0t*). Further
noting that 0%€/0t? = 20€ /0t - 0€ /0t +2€ - %€ /0t gives (& - Vp) =
po{u?y. Upon all these considerations, equation (7.9) becomes

{pL) = {pE) + po{u’)

Define V = p?/2pyc3, K = pou®/2. Then the energy is £ = K+V and
the Lagrangian is £ = K —V. By equation (7.8), (pL) = {pr)+2 (K).
Combine this result and the new notation with equation (7.6) to find
pL)-

Combining equation (7.6), {pp) = — (L) + C, with {(pg) = {(pr) —
2(K) gives {pr,) = —{L)+2{(K )+ C. Writing — (L) =(V) —(K)
gives

: Qm>=<v>—<K>+(7:

and

[ =+ EY+C

Show that in the linear limit, the Fulerian and Lagrangian excess
pressures are equal.

17



This is trivial. All the quantities in both expressions for the
Eulerian and Lagrangian excess pressures are quadratic, so in
the linear limit, the Eulerian and Lagrangian excess pressures
vanish identically.

Show that the Lagrangian radiation pressure (pr,) on a surface nor-
mal to and in contact with the fluid motion is constant. What is
remarkable about this result? Hint: Take the time average of New-
ton’s second law, which in Lagrangian coordinates reads py0*E/ot? =

—&pL/éa.

The time average of Newton's second law is (py0%¢/0t?) = — (dpL/da).
The LHS vanishes because the time average of a time derivative
vanishes for a periodic wave. Thus —{dp,/da) =0 and

pr, = constant

Calculate {pg) and {pr,) in a standing wave, to accuracy of a constant
of integration C'. The standing wave is given by p = pg cos kzx sin wt,
or equivalently u = ppo sin kx coswt. Hint: Recall from Acoustics I

that V. = p*/2pocd and K = pou?/2 and write the answer in terms
of E=V+Kand L=K -V.
Using the definition of the potential energy density gives

vt
2poc;

Taking the time average and using the double angle trigonomet-
ric identity gives

V = cos® kx sin® wt .

2

V)=

Meanwhile the Kinetic energy density is

S, Co( + cos 2kx)

P2
K= 5 sin® kx cos® wt .
PoCy
Taking the time average gives
P2
K 1 — cos2kx
() = g )

18



These results are inserted in (pg) and {(py,) calculated previously
[see part (f)I:

P

PE = cos(2kx) + C'
4pocy \252)
Similarly,
2
Py
po=——-5+C
4p0€%
Determine the constant of integration C' by invoking the conservation

of mass. Specifically, require that

T+
| opar=0. ato@),

where! p' = (p — VB/A)/c3. Answer:

_ B 1
~ 2A4pyct

C

See notes for the full solution. We had to use equation (3-39)
from [2], a nonlinear pressure-density relationship, to show this.
I am not comfortable with that step, and therefore I omit writing
this solution in these notes.

Given that the radiation force on an object of volume V is F,q =
—(V'Vp), calculate the radiation force exerted on a ping-pong ball
of radius R by a standing pressure wave p(x,t) = pgcos kx sinwt
in a closed tube. Assume that the ball is perfectly rigid and that
kR « 1. Hint: Reduce the problem to 1D, i.e., F.,q = —{(Vop/ox)
and assume that the ping-pong ball has sufficient inertia such that
FEulerian radiation pressure (pg) found in the previous problem can
be used. Also note that since the ball is rigid, its volume is constant.
All these considerations result in the radiation force being given by

4 R3 d {pg)
3 dx

Frad:_

1See equation (3-39) of [2].
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Inserting
2

(pE) =

B+ 2k
54 T cos2kz

into

P 4 R® d {pg)
rad — 3 dx
gives
2 3
Fog = — ;Tp(]}; sin 2kx (7.10)
PoCy

Define (P) to be the time-averaged momentum density, given by
(momentum /volume). Show that

(P) = & for f(z — cot)

Co
and

<P>——@ for  f(x 4+ cot).

Hint: write momentum/volume as p'u, and use linear relations p' =
p/ct and v = p/pocy. Then note that € = p?/poci.

Following the hints, for f(z — cot),

<p2> &

Po C() Co

(P)=<pluy = >—

while for f(z + cot),

<p2> <&

Po Co Co

(P)=—<p'uy = —

In class, the momentum flux (time-averaged momentum per unit
time per unit area) was found to be given by J = ¢ (P) = (&),
where (P) is the time-averaged momentum density discussed in the

20



previous part. At a 2-fluid interface, with the first fluid having pa-
rameters p; and c¢; and the second fluid having parameters ps and
co, the net momentum flux J into the interface was identified to be
the time-averaged Lagrangian pressure {(pr,). Use these relations to
find {pr,) in terms of the fluid parameters, the incident time averaged
energy density (&), and the pressure reflection and transmission co-
efficients R and T'. Hint: Start with {pL)y = co(P; — P, — Py).

As suggested in the hint:

{pr) = co{P;i =P, = Ps)
_(E4E—E) .

Now divide through by ¢&;:
_ e &) &
=<6 (1435 - 65)

Recalling (£) = (p*) /poci and the definitions of the reflection
and transmission coefficients gives the result:

{pry = (&) (1 TR pl_cij“Q)

pP2Co

Given that Fi,q oc (P), is it possible to have acoustic radiation force
in the linear limit?

It is not possible to have acoustic radiation force in the linear
limit because (P) is a quadratic quantity. Since Fruqoc (P), Frad =
0 in the linear limit.

Streaming

It was shown that the “full momentum equation” i.e., equation (3-2)
of [2], can be written as

@ — F' + VP =uVu+ (up+ p/3)V(V - u) (8.1)
where — F' = p(u - V)u + u(V - pu) (8.2)
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Take the time-average of equations (8.1) and (8.2) and denote F =
(F") to show that

F = V{(P)— uV*{u) (8.3)
F=—{p(u-V)u+uV - (pu)) (8.4)
What assumption has been made about the fluid in equation (8.3)7

What is another name for this assumption? Why does the (0(pu)/0t)
0?

(b) Drop the { ) notation denoting “time average” and let the time av-
eraging be implied on all wave quantities. Letting P = Fy + p1 + po,
p = po+ p1+ p2, and u = w; + ue, the subscripts refer to the order
of the term, show that the O(e?) version of equations (8.3) and (8.4)
are

Fy = Vpy — uV? {uy) (8.5)
Fy=—{po(ur- V)ur + u V- (pu1)) (8.6)

(c¢) Let p1 = poe”*sin(wt — kz). Calculate F5 using equation (8.6).
Hint: use the linear relation p1 ~ pycou.

(d) Take the limit of the above result as take the limit as o « k. Answer:
Fy = apd/poci. What does this result say about the nature of
acoustic streaming?

(e) In class, it was shown that in the presence of shocks,

I 3npel

the maximum value of which is 28kp3/3mpici. Show that the ratio
of Fyy to Fy is 2I'/3m, where I' = fek /o (the Gol’berg number).
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