
Review for the nonlinear acoustics midterm

Chirag∗

September 20, 2023

These conceptual and
analytical problems,
which are based on
Dr. Hamilton’s lec-
tures, address the
major topics of the
course thus far. Best
wishes on the exam!

1 Gauge functions & linear lossy theory
(a) Use the linearized 1D momentum equation ρ0Bu/Bt + Bp/Bx = 0 to

show that
u

c0
=

p

ρ0c20
=
ρ1

ρ0
. (1.1)

Hint: Start by integrating the momentum equation,

u = ´
1

ρ0

ż

Bp

Bx
dt,

and then let p = f(t ´ x/c0). Note that Bf/Bx = ´ 1
c0

Bf/Bt.
Letting p = f(t ´ x/c0), the integral form of the momentum
equation is

u = ´
1

ρ0

ż

Bf

Bx
dt.
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Noting that Bf/Bx = ´ 1
c0

Bf/Bt gives

u =
1

ρ0c0

ż

Bf

Bt
dt =

f

ρ0c0
,

which upon replacing f = p, noting that p = ρ1c20, and dividing
through by c0, gives the desired result,

u

c0
=

p

ρ0c20
=
ρ1

ρ0
.

(b) What is the definition of the acoustic mach number ϵ?
Letting p0 (or u0) characterize the sound pressure (or particle
velocity), the acoustic mach number is, by equation (1.1),

ϵ =
u0
c0

=
p0
ρ0c20

=
ρ1

ρ0
.

(c) What is the order of

• aO(ϵn), where a is a constant?
• O(ϵn) +O(ϵm), for n ă m?
• O(ϵn)O(ϵm)?
• [O(ϵn)]m?

• ∇2p = 1
c20

B2p
Bt2 ?

• ∇2p ´ 1
c20

B2p
Bt2 ?
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aO(ϵn) = O(ϵn)

O(ϵn) +O(ϵm) = O(ϵn)

O(ϵn)O(ϵm) = O(ϵn+m)

[O(ϵn)]m = O(ϵnm)

∇2p =
1

c20

B2p

Bt2
= O(ϵ)

∇2p ´
1

c20

B2p

Bt2
= O(ϵ2)

(d) What does the “acoustic Stokes number” η = µω/ρ0c
2
0 characterize?

It which governing equation does it arise and aid the ordering of
terms? What is the order of µ, the shear viscosity?
The acoustic Stokes number characterizes the importance of
``viscous stresses in a plane progressive sound wave, relative to
the fluctuating pressure'' [2]. It arises in the momentum equa-
tion and is a small but important correction to lossless theory.
Since ω, ρ0, and c0 are O(1), µ is O(η).

(e) How does a term of O(ϵ2) compare to a term of O(ηϵ)?
O(ϵ2) terms are given the same importance as O(ηϵ) terms. This
follows Lighthill (1956) [2].

(f) What is the order of the Prandtl number Pr = µCP/κ, and what
does it characterize? It which governing equation does it manifest?
What is the order of κ which appears in the definition of the Prandtl
number?
The Prandtl number is O(1) is related to heat conduction and
arises in the entropy equation. Since CP = O(1) and µ = O(η),
κ = O(η) also.

(g) Show that the temperature perturbation T 1 is O(ϵ) by expanding
the ideal gas law, P = RρT , where P = P0 + p, ρ = ρ0 + ρ1, and
T = T0 + T 1.
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Expanding the equation of state as suggested gives

P = RρT

P0 + p = R(ρ0 + ρ1)(T0 + T 1)

= R(ρ0T0 + ρ0T
1 + ρ1T0 + ρ1T 1) .

Equating the terms of O(ϵ) gives p = R(ρ0T
1+ρ1T0). Since R and

ρ0 are O(1), T 1 in the first term is O(ϵ), because the product
Rρ0T

1 must be O(ϵ).

(h) Recall the entropy equation,

ρ0(T0 + T 1)
Bs1

Bt
= κ∇2T 1.

What is the order of the entropy perturbation s1?
Since κ = O(η) and T 1 = O(ϵ), the right-hand side of the entropy
equation is O(ηϵ). Meanwhile, the lowest-order term on the left-
hand side is ρ0T0ṡ1. Since ρ0T0 = O(1), the entropy perturbation
s1 is O(ηϵ).

(i) Derive the attenuation coefficient from the lossy linear wave equa-
tion below to O(η). What is the next highest-order term in the
attenuation coefficient?

B2p

Bx2
=

1

c20

B2p

Bt2
´
δ

c40

B3p

Bt3
(1.2)

Substituting p9 exp[j(ωt ´ k̃x)] gives

k̃2 = ω2

(
1

c20
´
jωδ

c40

)
ùñ k̃ =

ω

c0
(1 ´ jωδ/c20)

1/2

=
ω

c0
(1 ´ jωδ/2c20) +O(η2)

= k ´ jω2δ/2c30 +O(η2)

The imaginary part is read off as the attenuation coefficient

α =
δω2

2c30
+O(η3) .
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The higher order term in the attenuation coefficient is deter-
mined to be O(η3) because the O(ϵ2) term is real and contributes
to k.

(j) Derive the progressive wave equation of O(ηϵ) from the linear lossy
wave equation

B2p

Bx2
´

1

c20

B2p

Bt2
= ´

δ

c40

B3p

Bt3
(1.3)

Hint: start by transforming coordinates

(ηx, t ´ x/c0) ÞÑ (x1, τ)

B/Bx is first transformed:
B

Bx
=

B

Bx1

Bx1
Bx

+
B

Bτ

Bτ

Bx
= η

B

Bx1
´

1

c0

B

Bτ
(i)

Next, B/Bt is transformed:
B

Bt
=

B

Bx1

Bx1
Bt

+
B

Bτ

Bτ

Bt
=

B

Bτ
. (ii)

Applying equation (i) to B/Bx gives

B2

Bx2
= η2

B2

Bx21
´

2η

c0

B2

BτBx1
+

1

c20

B

Bτ 2
, (iii)

and applying equation (ii) to B/Bt gives

B2

Bt2
=

B2

Bτ 2
. (iv)

Substituting equations (i)-(iv) into equation (1.3) gives

η2
B2p

Bx21
´

2η

c0

B2p

BτBx1
= ´

δ

c40

B3p

Bτ 3

The first term on the left-hand side above is thrown out because
it is O(η2ϵ). The substitution x = ηx1 is also made. Integrating
over τ and rearranging gives

Bp

Bx
=

δ

2c30

B2p

Bτ 2
.
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(k) On a plot of pressure vs. retarded time τ , what is the meaning of “to
the left of τ = 0” and “to the right of τ = 0”? What is strange about
the solution to the linear lossy progressive wave equation derived in
the previous question?
``To the left of τ = 0'' means ``faster than the (linear) speed
of sound c0,'' because if t ´ x/c0 ă 0, then x/t ą c0. Similarly,
``to the right of τ = 0'' means ``slower than the (linear) speed
of sound c0,'' because if t ´ x/c0 ą 0, then x/t ă c0. What is
strange about the solution to the linear lossy progressive wave
equation is that for an impulsive source condition p(0, τ) = δ(τ),
the solution is a Gaussian in τ , which is an infinite waveform.
That is, this solution ``tickles the ends of the universe'' [1], even
after propagating only a finite distance x.

(l) Coordinate transformation practice: Write the partial derivatives
with respect to the spherical coordinates1 B/Br, B/Bθ, and B/Bψ as
partial derivatives with respect to Cartesian coordinates x, y, z.
Noting that

Bx

Br
= cosψ sin θ, By

Br
= sinψ sin θ, Bz

Br
= cos θ,

Bx

Bψ
= ´r sinψ sin θ, By

Bψ
= r cosψ sin θ, Bz

Bψ
= 0,

Bx

Bθ
= r cosψ cos θ, By

Bθ
= r sinψ cos θ, Bz

Bθ
= ´r sin θ,

the partial derivatives with respect to the spherical coordinates
become

B

Br
= cosψ sin θ B

Bx
+ sinψ sin θ B

By
+ cos θ B

Bz
B

Bψ
= ´r sinψ sin θ B

Bx
+ r cosψ sin θ B

By
B

Bθ
= r cosψ cos θ B

Bx
+ r sinψ cos θ B

By
´ r sin θ B

Bz

1θ is polar and ψ is azimuthal, i.e., x = r cosψ sin θ, y = r sinψ sin θ, and z = r cos θ.
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(m) Fun (but fictitious) coordinate transformation problem: The spheri-
cally symmetric scalar wave equation for light is2

B2p

Br2
+

2

r

Bp

Br
´

1

c2
B2p

Bt2
= 0 , (1.4)

where c is the speed of light. Meanwhile, Einstein’s general theory of
relativity can be solved exactly to show that at a radial coordinate
r from a non-rotating mass, time dilates as

t1 = t

c

1 ´
2GM

rc2
, (1.5)

where t is the time far away from the mass, G is the gravitational
constant, and M is the mass of the object [3]. Denote rs = 2GM/c2

for convenience.3 Write equation (1.4) in the coordinates (r, t1) =
(r, t

a

1 ´ rs/r). Hint: follow a procedure similar to problem (j).
It helped me to introduce an auxiliary coordinate r1 = r to keep the
“old” and “new” coordinates straight while performing the coordinate
transformation.
The partial derivatives become

B

Br
=

B

Br1

Br1

Br
+

B

Bt1
Bt1

Br
=

B

Br1
+
rst

2r2
(1 ´ rs/r)

´1/2 B

Bt1
(v)

B

Bt
=

B

Bt1
Bt1

Bt
+

B

Br1

Br1

Bt
= (1 ´ rs/r)

1/2 B

Bt1
(vi)

B2

Br2
=

B2

Br12
+
rst

r2
(1 ´ rs/r)

´1/2 B2

Bt1Br1
+
r2st

2

4r4
(1 ´ rs/r)

´1 B2

Bt12
(vii)

B2

Bt2
= (1 ´ rs/r)

B2

Bt12
(viii)

Substituting equations (v), (vii), and (viii) into equation (1.4) gives

B2p

Br12
+
rst

r2
(1 ´ rs/r)

´1/2 B2p

Bt1Br1
+
r2st

2

4r4
(1 ´ rs/r)

´1 B2p

Bt12

+
2

r

[
Bp

Br1
+
rst

2r2
(1 ´ rs/r)

´1/2 Bp

Bt1

]
´

1

c2
(1 ´ rs/r)

B2p

Bt12
= 0 .

Substituting r1 = r and t = t1(1 ´ rs/r)
´1/2 results in the spher-

ically symmetric wave equation in the vicinity of non-rotating
mass in (r, t1) coordinates:

2p is used as the wave variable for familiarity.
3rs is the Schwarzschild radius.
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B2p

Br2
+
rst

1

r2
(1 ´ rs/r)

´1 B2p

Bt1Br
+
r2st

12

4r4
(1 ´ rs/r)

´2 B2p

Bt12

+
2

r

[
Bp

Br
+
rst

1

2r2
(1 ´ rs/r)

´1 Bp

Bt1

]
´

1

c2
(1 ´ rs/r)

B2p

Bt12
= 0 .

2 Lossless nonlinear theory
(a) Show that the so-called Poisson solution

u = g[x ´ (c+ u)t]

satisfies the exact lossless nonlinear equation for progressive waves,

Bu

Bt
+ (c+ u)

Bu

Bx
= 0. (2.1)

Hint: for notational ease, denote y = x´ v(u)t, where v(u) = c+ u.
Note that By/Bx = 1´ v1(u) t Bu/Bx and By/Bt = ´v´ v1(u) t Bu/Bt.
The progressive wave equation, where c+ u has been denoted v,
is

Bu

Bt
+ v

Bu

Bx
= 0

Using the suggested substitutions, the derivatives in the exact
lossless nonlinear progressive wave equation are evaluated:

Bu

Bt
= g1 By

Bt
= ´g1 ¨

(
v ´ v1 t

Bu

Bt

)
ùñ

Bu

Bt
= ´

g1v

1 + g1v1t
Bu

Bx
= g1 By

Bx
= g1 ¨

(
1 ´ v1 t

Bu

Bx

)
ùñ

Bu

Bx
=

g1

1 + g1v1t

8



Substituting Bu/Bt and Bu/Bx into the progressive wave equation
gives 0 on both sides of the equation,

´
g1v

1 + g1v1t
+ v

g1

1 + g1v1t
= 0 ,

i.e., the Poisson solution indeed satisfies the lossless nonlinear
progressive wave equation.

(b) Recalling the adiabatic sound speed c2 = γP/ρ and the adiabatic
gas law, show that (

ρ

ρ0

)
=

(
c

c0

)2/(γ´1)

. (2.2)

Show that the differential dρ is

dρ =
2

γ ´ 1
ρ0(c/c0)

2/(γ´1)c´1 dc . (2.3)

Substituting P = c2ρ/γ and P0 = c20ρ0/γ into the adiabatic gas
law P/P0 = (ρ/ρ0)

γ gives

P

P0
= (c/c0)

2ρ/ρ0 = (ρ/ρ0)
γ.

Dividing by ρ/ρ0 gives and taking the square root and

c/c0 = (ρ/ρ0)
(γ´1)/2.

Inverting for ρ/ρ0 gives

(
ρ

ρ0

)
=

(
c

c0

)2/(γ´1)

.

Writing ρ = ρ0(c/c0)
2/(γ´1), the differential is calculated to be

dρ =
dρ

dc
dc =

2

γ ´ 1
ρ0(c/c0)

2/(γ´1)c´1 dc .
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(c) Recall that the quantity λ equals u for a progressive wave, because
this condition sets the Riemann invariant J´ (which corresponds to
backward-traveling waves) to 0. Noting that dλ = (c/ρ) dρ, use
equation (2.3) to show that

c+ u = c0 + βu where β =
1

2
(γ + 1) (2.4)

Using equation (2.3) and simplifying gives

dλ =
c

ρ
dρ =

c

ρ

2

γ ´ 1
ρ0(c/c0)

2/(γ´1)c´1 dc

=
1

ρ0(c/c0)2/(γ´1)

2

γ ´ 1
ρ0(c/c0)

2/(γ´1) dc =
2

γ ´ 1
dc .

Integrating the above result gives

λ =

ż

dλ =
2

γ ´ 1
c+ constant

Noting that λ = 0 for c = c0 sets the constant equal to ´2c0/(γ´

1). Finally, using the fact that λ = u for a progressive wave
gives c = c0 + (γ ´ 1)/2u. Adding u to both sides and identifying
β = 1

2(γ + 1) gives

c+ u = c0 + βu .

(d) Derive the Earnshaw solution for a boundary value problem, in which
the time variation u(0, t) at the face of the piston is known.
Let X denote the position of the piston. Suppose the disturbance
X(ϕ) is the position of the piston face at the time the acoustic
disturbance leaves the piston face. The speed of the piston is
therefore u = Ẋ(ϕ). Meanwhile, at t ą ϕ, the disturbance will
have traveled to position x ą X(ϕ). Therefore,

the speed of disturbance =
x ´ X(ϕ)

t ´ ϕ
(ix)
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According to equation (2.4), the disturbance propagates at c0 +
βẊ(ϕ). Therefore, equation (ix) becomes

c0 + βẊ(ϕ) =
x ´ X(ϕ)

t ´ ϕ
.

Solving for ϕ gives the implicit solution:

u = Ẋ(ϕ), ϕ = t ´
x ´ X(ϕ)

c0 + βẊ(ϕ)
.

(e) What is the Earnshaw solution for a sinusoidal boundary condition,
u(0, t) = u0 sinωt?4

Given the boundary condition of the velocity of the piston, the
boundary condition of the position of the piston can be found by
integration:

X(t) = ´(u0/ω) cosωt+ constant
= (u0/ω)(1 ´ cosωt) ,

where the constant has been determined by setting the displace-
ment of the piston to 0 at t = 0, i.e., X(0) = 0. The Earnshaw
solution is therefore

u = u0 sinωϕ, ϕ = t ´
x ´ (u0/ω)(1 ´ cosωϕ)

c0 + βu0 sinωt

(f) Derive the Earnshaw solution for an initial value problem (home-
work problem 2-7), in which the spatial variation at the face of the
boundary is known, e.g., u(x, 0).
See homework problem 2-7, part (a), for the solution.

(g) What is the Earnshaw solution for a linear boundary condition,
u(x, 0) = m0x?
See homework problem 2-7, part (b), for the solution.

4This was not done in the lecture; see page 70 of [2].
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3 Lossless nonlinear approximate theory
(a) Reduce the exact progressive nonlinear lossless wave equation is

given by equation (2.1), repeated below for convenience,

Bu

Bx
+

1

c+ u

Bu

Bt
= 0 (2.1)

to O(ϵ2) in (x, τ) = (x, t ´ x/c0) coordinates. Hint: Expand v(u) =
c+ u = v(0) + v1(0)u+O(ϵ2) = c0 + βu+O(ϵ2) and then perform a
binomial expansion of (c0 + β0u)

´1. Answer:

Bu

Bx
=
β

c20
u

Bu

Bτ
(3.1)

The first order expansion of c + u is c0 + βu, as hinted. The
denominator of the second term becomes 1/c0 ´ βu/c20 + O(ϵ2).
Substituting this into equation (2.1) gives

Bu

Bx
+

1

c0

Bu

Bt
=
βu

c20

Bu

Bt
(x)

Next, noting that

B

Bx
ÞÑ

B

Bx
´

1

c0

B

Bτ
and B

Bt
=

B

Bτ
,

equation (x) becomes

Bu

Bx
=
βu

c20

Bu

Bτ

(b) Verify that u = f(τ + βxu/c20) solves equation (3.1).
See homework problem 2-6 for the solution. I had a typo in my
solution, so I have re-worked it here. Note that

Bu

Bx
= f 1

(
βu

c20
+
β

c20

Bu

Bx

)
ùñ

Bu

Bx
=
f 1βu

c20

1

1 ´ βxf 1/c20
Bu

Bτ
= f 1

(
1 +

βx

c20

Bu

Bτ

)
ùñ

Bu

Bτ
= f 1 1

1 ´ βxf 1/c20
.
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Multiplying Bu/Bτ by βu/c20 as it appears on the right-hand side
of equation (3.1) results in

βu

c20

Bu

Bτ
=
f 1βu

c20

1

1 ´ βxf 1/c20

which equals the left-hand side, Bu/Bx. Therefore, u = f(τ +
βxu/c20) satisfies equation (3.1).

(c) Use u = f(τ + βxu/c20) to calculate x̄, the shock-forming distance.
Hint: Find xvt = x such that Bu/Bτ = 8 (the condition for a vertical
tangent line). The smallest value of xvt is x̄.
The condition for a shock

Bu

Bτ
=

f 1

1 ´ βxvtf 1/c20
= 8 (3.2)

reveals that βxvtf 1/c20 = 1, or

xvt =
c20
βf 1

.

The smallest value of xvt is x̄, which occurs for the largest value
of f 1, f 1

max. Therefore, the shock forming distance is

x̄ =
c20

βf 1
max

.

(d) What is the shock-forming distance x̄ for a sinusoidal source f(t) =
u0 sinωt? Express the distance in terms of β, ϵ, and k.
Noting that f 1

max = ωu0, the result from the previous question
x̄ = c20/(βf

1
max) is used, giving

x̄ =
1

βϵk

where it has been noted that c0/ω = k and u0/c0 = ϵ.
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(e) Perform a perturbation solution for

Bu

Bx
=

β

2c20

Bu2

Bτ

for u = u0 sinωτ . For what range of σ = x/x̄ is this solution valid?
Hint: Substitute the power series in ϵ

u

c0
= ϵv1 + ϵ2v2 + ϵ3v3 + . . .

where ϵ ! 1 into the evolution equation, and then match orders on
both sides of the equation.
Note that

u2

c20
= ϵ2v21 + 2ϵ3v1v2 +O(ϵ4).

Upon making the suggested substitution, the approximate non-
linear progressive wave equation becomes

B

Bx
(ϵv1 + ϵ2v2) =

β

2c0

B

Bτ
(ϵ2v21 + 2ϵ3v1v2) .

Now the orders on either side of the equation above are matched.
There is no O(ϵ) term on the right-hand side, so

Bv1
Bx

= 0 ùñ v1 = sinωτ .

Matching the O(ϵ2) terms on the left- and right-hand sides and
noting k = ω/c0 gives

Bv2
Bx

=
β

2c0

B

Bτ
sin2 ωτ =

β

4c0

B

Bτ
(1 ´ cos 2ωτ) = βk

2
sin 2ωτ

Integrating over x gives v2:

v2 =
βkx

2
sin 2ωτ

Therefore, to O(ϵ2),

u

c0
= ϵ sinωτ + ϵ2

βkx

2
sin 2ωτ.
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Replacing ϵ with u/c0 and solving for u,

u = u0 sinωτ + u20βkx

2c0
sin 2ωτ +O(ϵ3)

(f) What problem does the Fubini solution address? For what σ is it
valid? To what solution did Blackstock “bridge” the Fubini solution?
The Fubini solution provides an explicit solution to the lossless
O(ϵ2) nonlinear progressive equation, equation (3.1). It is valid
until a shock forms, i.e., σ = x/x̄ ă 1. Blackstock ``bridged'' the
Fubini solution to the Fay solution.

4 Burgers equation

Comic relief

Bp

Bx
´

δ

2c30

B2p

Bτ 2
=

βp

ρ0c30

Bp

Bτ
(4.1)

1. Why did the Burgers equation go to the fast food restaurant?
To get a quadratic meal deal!

2. Why was the Burgers equation feeling down?
Because it felt like it was getting grilled by all those derivatives!

3. Why did the Burgers equation get stuck in traffic?
Because of its nonlinear convection term, it just couldn’t get
past all the other terms!

(a) Why is equation (4.1) accurate to O(ϵ2)?
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The Burgers equation is cobbled together two equations that
are accurate to O(ϵ2): the lossy linear progressive wave equa-
tion, given by equation (1.2) the lossless approximate nonlinear
progressive wave equation, given by equation (3.1).

(b) What is an alternate way of writing the right-hand-side of equation
(4.1)?
The right-hand side can alternatively be written as

β

2ρ0c30

B(p2)

Bτ

(c) What is the Gol’berg number Γ? What do the limits Γ ă 1 and
Γ " 1 correspond to? In which case does a shock form?
The Gol'berg number is

Γ =
βϵk

α
=
ℓa
x̄
.

It characterizes the relationship between absorption and nonlin-
earity. Γ ă 1 corresponds to absorption dominating nonlinearity,
i.e., the sound is absorbed before a shock forms. Γ " 1 cor-
responds to nonlinearity dominating absorption, in which case a
shock will form.

(d) Which of the following is a solution to equation (4.1) in the case that
δ = 0? Which is a solution in the case that β = 0?

p = f [τ + (βp/ρ0c
3
0)x] p = p0 exp[jωτ ´ (δω2/2c30)x] (4.2)

p = f [τ + (βp/ρ0c
3
0)x] is the solution to equation (4.1) for δ = 0

(lossless approximate nonlinear progressive wave equation), and
p = p0 exp[jωτ ´ (δω2/2c30)x] is the solution to equation (4.1) for
β = 0 (lossy linear approximate evolution equation).

(e) Assess second harmonic generation in the Burgers equation, using as
as the first approximation

p1 = p0e
´α1x sinωτ.
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where α1 = δω2/2c30. Hint: In this case it is more convenient to
write the Burgers equation as

Bp

Bx
´

δ

2c30

B2p

Bτ 2
=

β

2ρ0c30

B(p2)

Bτ
.

As per the method of successive approximations, the first ap-
proximation is fed into the nonlinear operator, and the second
order approximation is fed into the linear operator:

Bp2
Bx

´
δ

2c30

B2p2
Bτ 2

=
β

2ρ0c30

B(p21)

Bτ
.

The right-hand side, upon feeding it p1 = p0e
´α1x sinωτ and writ-

ing sin2 ωτ = (1 ´ cos 2ωτ)/2, becomes

p20β

4ρ0c30
e´2α1x

B

Bτ
(1 ´ cos 2ωτ) = p20βω

2ρ0c30
e´2α1x sin 2ωτ .

Anticipating that the second approximation has the same time-
dependence as the right-hand side, i.e., p2 = q(x) sin 2ωτ , results
in an ordinary differential equation,

dq2
dx

+ α2q2 =
p20βω

2ρ0c30
e´2α1x,

where α2 = 4α1. The particular solution is of the form q2p =
Ae´2α1x, where the constant A is determined by substitution into
the above:

A(´2α1 + α2) =
p20βω

2ρ0c30
ùñ A =

1

α2 ´ 2α1

p20βω

2ρ0c30
.

The homogeneous solution is

q2h = Be´2α2x .

Since q2(0) = 0, i.e., there is no second harmonic at the source
x = 0, B = ´A. Therefore, the second harmonic is fully deter-
mined:

p2(x, t) = (q2p + q2h) sinωτ =
p20βω

2ρ0c30

(
e´2α1x ´ e´2α2x

α2 ´ 2α1

)
sin 2ωτ
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(f) The solution to the Burgers equation for a so-called Taylor shock is

p =
∆p

2

[
1 + tanh

"

β∆p

2ρ0δ
(t1 ´ t0)

*]
(4.3)

Rewrite equation (4.3) by defining

trise =
4ρ0δ

β∆p
(4.4)

and use the result to show that

trise

(
Bp

Bt1

)
t1=t0

= ∆p,

Employing the definition of trise, equation (4.3) becomes

p =
∆p

2

"

1 + tanh
[

2

trise
(t1 ´ t0)

]*

.

Taking the derivative with respect to t1 and evaluating at t1 = t0,
and solving for ∆p gives

trise

(
Bp

Bt1

)
t1=t0

= ∆p .

(g) In what limit of viscosity δ does the Taylor shock become a step
shock? Hint: A step shock is defined by trise Ñ 0.
By equation (4.4), the Taylor shock becomes a step shock in the
limit that δ Ñ 0.

(h) What is the name of the transformation that leads to the Fay solu-
tion? What equation does the Fay solution satisfy? What are the
restrictions on this solution?
The transformation is called the ``Hopf-Cole transformation.''The
Fay solution satisfies the Burgers equation for Γ " 1 and σ Á 3.

(i) Show that σ = x/x̄ can be written as

σ =
βp0kx

ρ0c20
(4.5)
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by recalling the definition of the shock formation distance and the
acoustic mach number.
The shock formation distance is x̄ = 1/βϵk, and the acoustic mach
number is ϵ = u0/c0 = p0/ρ0c

2
0. Therefore,

σ = βϵkx =
βp0kx

ρ0c20
.

(j) The Fay solution is

p = p0

8
ÿ

n=1

Bn(σ) sinnωτ, where Bn(σ) =
2A

sinh[nA(1 + σ)]
.

where A = αx̄ = αρ0c
2
0/p0βk. Show that for σ " 1, the pressure

becomes

p =
4ρ0c

2
0α

βk

8
ÿ

n=1

e´nαx sinnωτ ,

where equation (4.5) has been invoked. What is this waveform
called? Hint: think about the color of Dr. Hamilton’s hair.
In the limit that σ " 1,

sinh[nA(1 + σ)] =
enA(1+σ) ´ e´nA(1+σ)

2
Ñ enAσ/2

so
Bn Ñ 4Ae´nAσ.

Therefore, the Fay solution becomes

p = 4Ap0

8
ÿ

n=1

e´nAσ sinnωτ

Making the substitution A = αρ0c
2
0/p0βk results in

p =
4αρ0c

2
0

βk

8
ÿ

n=1

e´nAσ sinnωτ
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Note that Dr. Hamilton's hair is white, and that white hair is
associated with old age. Thus it is recalled that the σ " 1 limit
of Fay solution is referred to as the ``old age'' waveform.

(k) It was shown in class that for Γ Ñ 8 (equivalently, A Ñ 0), the Fay
solution reduces to

p =
2p0
1 + σ

8
ÿ

n=1

1

n
sinnωτ . (4.6)

Combine equations (4.5) and (4.6) to show that for σ " 1,

p =
2ρ0c

2
0

βkx

8
ÿ

n=1

1

n
sinnωτ . (4.7)

What is remarkable about equation (4.7)?
In the limit that σ " 1, equation (4.6) becomes

p =
2p0
σ

8
ÿ

n=1

1

n
sinnωτ .

Writing σ = βp0kx
ρ0c20

gives

p =
2ρ0c

2
0

βkx

8
ÿ

n=1

1

n
sinnωτ .

What makes this solution remarkable is that it does not depend
on the source pressure p0.

(l) What is the time-domain version of the Fay solution called?
The time-domain version of the Fay solution is called the Khokhlov
solution.
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