Problem from Fundamentals of Physical Acoustics by D. T. Blackstock.

10-13. A certain sound field inside a hollow hemisphere (radius a, all surfaces
rigid) has the property that the pressure is zero along the z axis. Find
the lowest two eigenfrequencies for this field, and identify their corre-
sponding eigenfunctions ¢;,,,.
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a = hemisphere radius
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First approach. In the original coordinate system of the problem, the boundary con-
ditions are

op

P 0 ()

r=a

op
— =0 (i7)
a0 O=m/2

p(0=0)=0. (ii)

The Neumann functions are thrown out because they diverge at » = 0, which is a point
in space in which the sound is finite, so the form of solution to the Helmholtz equation is

sin ma)

R(rO(0)W(v) = ji(kr) P (cos 0) { ”"“”} . (1)

Applying boundary condition (7) on r gives j, (ka) = 0, or

where 2/, is the [th root of the nth order derivative of the spherical Bessel function
given by table 10.1 in Blackstock’s book. Next, applying boundary condition (i) gives
P(cos0) = 0, or P*(1) = 0. Looking at a table of the associated Legendre functions
shows that all the Legendre polynomials satisfy this property except for m = 0. But
m =0,1,2,...n. Therefore m # 0. Finally, applying boundary condition (iz) gives

d m
@Pn [cos(m/2)] = 0. (2)



Evaluating equation (2) is what makes this problem difficult, because no relation is given
in Blackstock’s book (and some of the Associated Legendre functions listed on page 348
are off by a factor of —1). The left-hand column below are the associated Legendre
functions of cos @ as provided by Wikipedia.

Pl (cos) = —sinf — dilePll(cos 0) = —cos

Py} (cosf)) = —3cosfsinf — C%P;(cos ) = 3cos26

PZ(cos ) = 3sin? — C%Pg(cos ) = 6sin 6 cos b

Pj(cos ) = —2(5 cos? — 1)sinf) = dilePgl(cos 0) = 15[cos Osin® @ — cos(6)/2] + 3 cos(f)/2
P (cosf) = 15 cos f sin® 0 — dilePgQ(cos 0) = —15(sin® @ — 2 cos® fsin 0)

P} (cosf) = —15sin* 0 — C%P;’(cos 0) = —45sin* 0 cos 0

It can be seen from the column on the right-hand side that

d
@P,T[COS(W/Q)] =0, m+n= even

#0, m+n= odd

Equation (1) thus becomes

Pnim = jn(knlr)Py?Ln(COS 9) {COS mw} )

sin ma)

where m=1,2... and m+n = even

The lowest two nonzero eigenfrequencies are found to be proportional to the underlined
values of 2/, = 2, and 2!, = 2/, below,

Table 10.1 Tables of Zeros of Spherical Bessel Functions

Roots x,, of j,(x) =0 Roots x,, of ju(x) =0
{ n=0 n=1 n=2 n=3 n=4|n=0 n=1 n=2 n=3 n=4
1 b4 4493 5763 6.988 8.183 0 _2.082 3.342 4514 5.647
2 2 7.725 9.095 10.417 11.705| 4.493 5940 7.290 8.578 9.840
3 3r 10904 12323 13.698 15.040| 7.725 9.206 10.614 11.973 13.296
4 4r 14066 15.515 16.924 18.301 [10.904 12.405 13.846 15.245 16.609
5 Sm 17221 18.689 20.122 21.525{14.066 15.579 17.043 18.468 19.862

i.e., the lowest two eigenfrequencies are

2.082¢, ~3.342¢
o2ra

fu =



https://en.wikipedia.org/wiki/Associated_Legendre_polynomials

Second approach. In this approach, the hemisphere is rotated 90° about the z-axis,
as shown below:

X

In this case, the boundary conditions are

oo =0 ()

r=a

r,6,1) =0 (i7)

$=0

K
p wp(
P

%p(r,e,@/z) - =0 (i)

p(r,m/2,0) =0 (iv)

Boundary condition (7) describes curved hemisphere being rigid, and boundary conditions
(7) and (7i7) describes the base of the hemisphere (now corresponding to the y = 0 plane)
being rigid. Boundary condition (7v) corresponds to the requirement that p = 0 along
axis of symmetry of the hemisphere (now corresponding to the y-axis).

In the solution, the Neumann functions are again tossed because sound cannot be
infinitely loud at the origin:

R()OO)¥(w) = julkr) P (cos ) {én”jjﬁ;} , (3

Setting boundary condition (7) equal to equation (3) gives the condition
jaka) =0 = ky =", (4)

where 27, is as defined before. Meanwhile, setting boundary condition (i) equal to
equation (3) gives

i(Acosmw+Bsinm¢) =0 = B=0.
o) $=0



Next, invoking boundary condition (7iz) determines the values of m:

— (A cosma) =0 = sinmr=0 = m=0,12...

oY ver
Finally, invoking boundary condition (iv) gives
P[cos(m/2)] cos(mm/2) =0

Note that cos(mm/2) is +1 for m even and 0 for m odd. Therefore, P*(0) = 0 by the
zero product property. At this juncture, the following footnote in Blackstock’s book is
noted:

4 . . .
The odd, even properties of P}'(z) are worth noting. Equation B-32 shows that P, is an odd

!‘unctxon of z if m+n is an odd number, an even function if # +# is an even number. This
information is useful, for example, when one analyzes the sound field in a hemispherical enclosure.

P™(0) = 0 is guaranteed for an odd function P (z). Therefore, m + n = odd. The
eigenfunctions are therefore given by

Prim = Jn (k1) P (cos 0) {cos(m@/))} ,
where n=0,1,2...,
m=0,1,2...,n
and m +n = odd

The lowest two nonzero'eigenfrequencies are found to be proportional to the underlined
I VAW
values of z;, = 2, and z;, = x5, below,

Table 10.1 Tables of Zeros of Spherical Bessel Functions

Roots x,, of j,(x) =0 Roots x,; of ji(x) =0

¢ n=0 n=1 n=2 n=3 n=4|n=0 n=1 n=2 n=3 n=4

b4 4493 5.763 6.988 8.183 0 _2.082 3.342 4514 5.647
2r 7.725  9.095 10.417 11.705| 4.493 5940 7.290 8.578 9.840
3r 10904 12323 13.698 15.040| 7.725 9.206 10.614 11.973 13.296
4r 14066 15515 16.924 18.301 | 10.904 12.405 13.846 15.245 16.609
St 17.221 18.689 20.122 21.525 | 14.066 15.579 17.043 18.468 19.862
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i.e., the lowest two eigenfrequencies are

2.082¢q 3.342¢,
2—7 f21 = T 5
Ta

fu =

2ma

Let’s talk more about the “dc” solution for corresponding to x/,, = x{,
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