Overview and derivation of reflection and transmission
between two elastic solids

Dr. Michael Haberman

1 Introduction

i SeLp*

]Sounb‘ﬂ;

The sketch above shows either an incident longitudinal (P) or transverse (S) wave (or both).
We must establish continuity of velocity (or displacement) and traction at x3 = 0. We define

v = Vi1 + vsis, (i)

t= tlil + t3%3 = T;jnj, (11a)
v1 and vg are obtained from incident, reflected, and transmitted angles.

We want to know t on the z3 = 0 plane. Therefore, n must be normal to that plane, i.e.,
n = (0,1) for 2D. The stress tensor becomes

Tll T13

T =
- T3 Tz3




and the tension becomes

Tll T13

T31 T33 1

So,

t = Tizis + Thats

Each component of v and ¢ must be continuous across the interface:

Vi UL+ or +orn = ol ol
Uzls,T + UiI%,L + U?,T + U?L = U?:F,T + U3T,L
T1I3,T + T113,L + T%,T + T1R3,L = T1T3,T + TE‘;,L
T§3,T + T§3,L + TS%,T + TL’%,L = Tyr+Tey

(iib)

(iiia)
(iiib)
(iiic)
(iiid)

So, there are four equations for four unknowns: A%, AR, AT Al. The equations are usually
solved in terms of reflection and transmission coefficients, which are ratios of the unknown

amplitudes to the “known” (or assumed) amplitudes of the incident fields.

Using the notation provided in Rose’s Ch. 5, the reflection and transmission coefficients for
longitudinal and transverse waves given an incident longitudinal (P-wave) are defined as:

Ry = ﬁ—?
Ryr = i—?
T = j—;f,
Tir = j_

For shear (S-wave) incidence we define analogous coefficients:

Ry, = Q—E,
Rrr = j—i
Trr, = i—g
T = j_



We now need to relate the velocity to the displacement field, u, the stress, T', and strain,
E. state using following relationships:

_ou
ot

= jwu (for time harmonic waves),

1 (0u; Ou;
Eij = - + =ah

2 8xj 8%
The latter relationship can be specialized to yield the following elements of the strain tensor:
Ell = U1z, E33 = Uus,s, and E13 = %(um + U371), which will be used in the stress-strain

relationship in order to find expressions for the continuity of traction at the boundary between
dissimilar elastic solids.
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We now employ Hooke’s law for an isotropic solid to write the following expressions for the
components of the stress tensor in terms of the strain

T3 = 2puEs = p(urs + usq),
Ts3 = N By + Esg) + 2k = M Esz + AEq,

where M = \ + 2p is the plane wave modulus of the material. By substituting the assumed
form of the solution for time-harmonic plane waves form into these relations, we can find a
set of four linear equations which are dependent on the material properties and the angle of
incidence in matrix-vector form provided below,

[M]x = b (1)
where
e [M]is a 4 x 4 matrix of constants (1, A1, 2, A2, Orp, OrT, - - - )-
e xis a4 x 1 vector of Rs and T's
e bis a4 x 1 vector of “known” inputs (p1, A1, 6r)

Those four equations can be solved for the reflection and transmission coefficients for any
angle of incidence and for any combination of material half-spaces. Note that [M] is does
not change between cases of shear and longitudinal incidence but the vector in inputs, b,
will change depending on incident wave type.

Summary of results

The derivations provided in Sec. (2) and (3) arrive at the following results for the system of
equations provided in Eq. 1.

The matrix [M] is given by



cos ORy, cos Oy, sin Orr —sin fpr
— sin fRy, sin O, cos Orr cos Or
*ZLI COS 29RT ZLQ COS 20TT *ZTl sin 29RT *ZTQ sin 29TT
ZT1 (CTI/CLI) sin QQRL ZT2 (CTQ/CLQ) sin 29TL —ZT1 COS QHRT ZT2 COS 29TT

[M] = (2)

Incident longitudinal waves

Incident longitudinal waves satisfy

[M].’B = bL
where
x={R, T, Rr Tr} (3)
. cT1\ . T
by, = {cos O, sinfy,  Zpicos(20rt)  Zm (—) sm(291L)} , (4)
CL1
Incident shear waves
Incident shear waves satisfy
[M]CL‘ = bT
where
T
bT = { — sin HIT COS 91T — ZTl SiH(QQIT) ZTl COS(Q@IT)} . (5)

The sections that follow provide the detailed derivation of these matrix equations.



2 Longitudinal (P-wave) incidence

Geometry and material properties
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Definitions:
e P = incident P-wave
o Pr = reflected P-wave

e P = transmitted P-wave

St = transmitted S-wave

O, = angle of P-wave incidence (L for longitudinal)

Orr = angle of S-wave reflection (7" for transverse)

Or1, = angle of P-wave reflection

Ot = angle of S-wave transmission

Or1, = angle of P-wave transmission
Forx=1,2...

o P2ty = (Ao 4 21s) = M,

® PaChy = llo

® 7o = PeCle = VP My

® Z1y = PrCTz = \/Palla



Continuity Conditions

Aty =0,
Uz(xl) _ uf), ug1) _ qu)
1 2 1 2
) -1, ) -
with

@ = o)l il = o)

) =l = o) )

L, RL RT _ TL T
(¢) Tyy = T,+T,-+T, =T,+T,

1L RL RT _ TL TT
(d) Tyz = Tyz +Tyz +Tyz _Tyz +Tyz

And we recall:

Ty = MEy, + E..) +2uE,, = (A +2u)Ey, + \E..
Ty, = 2uk,,

with El] = %(u%z + uz,y)-

Assume the displacements have the form...

UiL sin 91L ; .
uy, = edWixn)s oy = —kyy 2 sin O, + kryy cos fr,
—Ug, COS HIL

URy, Sin ORy,

UR], COS GRL} eI WHXRL): oy = —kpyzsinfgr, + kiiy cos Oy,

e/ Witxrr)s ypp = —kpy 2 sin Oy + kriy cos Oy

wrr, sin O,

GJ(M+XTL); XTL = —ky9zsin Oy, + kLgy cos O,
—U7, COS QTL

wpT Sin Opr

eI WHXTT) sy = — Koz sin Opp + kroy cos Opr
—U7T COS HTT

—URT SIn ORT
URT =
—URT COS QRT

\ ) e — ——

with



The continuity condition (a) becomes. ..

—uyy, €08 Oy, e @WHXIL) 4 yn e cos Opp el WHTXRL) 4 gipy cos 67 @HEXRT)
— —wpp, cos Opp e WXL gy cos Gpped HEXTT) (a)

The common e/“* time-dependence cancels out. We also note that for x,. to be constant
(i.e., phase matching of u, at all 2),

XIL = XRL = XRT = XTL = XTT

Expressing the trace wavenumbers in terms of the frequency, speed, and angle,

w . W W, w o, W,
—sinf, = — sinfgr, = — sinfgy = — sin O, = — sinOpr
CL1 CL1 CT1 CL2 CT2
The first equality above shows that fg;, = 0;1,. Canceling the common w, the remaining four
equalities recover Snell’s law:

sin QIL sin HRT sin HTL sin ‘9TT

CL1 CT1 CL2 CT2
Then, continuity condition (a) becomes

—uqg, €08 O11, + uRy, €os Ory, + ury, €os Orr, = —uTy, cos Oy, + upT cos Orr
Defining
URL
R, = —
Ur,
URT
Ry = —
UL
UTL
T, = —
U,
urt
TT = )
UL

continuity condition (a) becomes

RL COS QRL + RT sin QRL —+ TL COS HTL — TT sin eTT = COS QIL (A)

Similarly, continuity condition (b) becomes

UIL sin QIL -+ URL sin QRL — URT COS QRT = U7, COS QTL -+ UTT COS GTT

or, in terms of the above-defined reflection and transmission coefficients,

RL sin QRL — RT COS QRT — TL sin QTL — TT COS 9TT = —sin 91L (B)



Now for the stress equations. ..
We now need E,,, E,., E,.. Note that £, = u,, = %, which we need for both sides of
the interface. Since we have assumed the form wu, = }uy} eIx(W),

E,, = |Uy| eIX) (j%) )

So in solid 1, at y = 0,

solid 1
Uy

dy

= —Urr, COS HIL (jkLl COS QIL) + URI, COS ‘gRL(_jkLl COS QRL) + URT COS QRT(_jk:Tl COS 9RT)7

y=0

and in solid 2, at y = 0

solid 2
Ou,

dy

= —UT1, COS eTL (jk’LQ COS GTL) + UTL sin ‘9TT (jkTL COS 9TT> .

y=0

Likewise, for E.,.,

solid 1
Uy

0z

= UIL sin QIL(_jkLl Sin QIL) + URL Sin HRL(_jk:Ll COS QRL) — URT COS QRT(—jkITl sin 9RT)>

y=0
and in solid 2, at y =0

solid 2
ou,

0z

= UTL sin 9TL<_j /{ZLQ sin ‘gTL) + U1, COS QTT (] kTL sin GTT) .

y=0
So condition (c) is written

solid 1 solid 2

T,

vy

By the stress-strain relation,

()\1 + QNI)E;Zhd 1 + )\lEzzlid 1 _ ()\2 + QMU)E;zlid 2 + )\gEzghd 2

Substituting in the derivatives taken above,



. W . W )
()\1 + 2M1> (—j— COS2 QILUJIL — ] COS2 QRLURL — )] COS2 HRTURT)
CL1 CL1 CT1

LW, LW, LW
+ M | —j—sin? Oy, — j— sin® OppupL + j— sin Ogr cos GRTURT)
CL1 CL1 C11

Lw LW,
= (Aa+2u2) (—]— cos” Orpury, + j— sin Opr cos HTTUTT>
CL2 C12

LW W
+ A (—j — sin? Oppury, — j— sin O cos HTTUTT)
CL2 CT2

Rearranging yields

u u
A (—(cos2 Orr, + sin? (9114)E — (cos® Ogy, + sin” Ogy,) BL (sin Ogrr cos Orr — sin Ogrr cos Ogrr) ﬂ)
CL1 CL1 CT1
u
+ 211 (— cos? QILE — cos? GRL@ — sin Ort COSRT ﬂ)
CL1 CL1 CT1
U
=\ (—(COS2 11, + sin? HTL)m + (sin Oy cos Opr — sin Opr cos Opr) ﬂ)
CL2 Cr2
u u
+ 21 (— cos? QTLE + sin O costT ﬂ)
CL2 CT2
So, we have
U u . u
— (A1 42411 cos® (9IL)i — (A1 + 2 cos? GRL)ﬂ — sm(29RT)ﬂ
C11 CL1 11
u u
= — (Mg + 25 cos? t9TL)E + Lo sin(QHTT)ﬂ
CL2 CT2
A1+ 244 cos? , Ao + 2115 cos? ,
A + ad RL RL — & SHI(QQRT)RT + 2 o L TL — & SID(QQTT)TT
CL1 cT1 CL2 C12

A+ 2 cos® Oy,

(1)

CL1

Then, Achenbach chapter 5 (following equation 5.86) gives

A1+ 2411 cos® Oy, (cLl

2
) cos 20Rr,
H1

CT1
which yields

A1+ 2 cos? Oy,

= ZLl COS QQRT
CL1

Likewise, we find



)\2 + 2/112 COS2 GRL

= 15 €08 20T
CL2

and

A1+ 2u1 cos? Oy,

= /1,1 cos 20rT
CL1

Then, equation () becomes

_ZLl COS(QQRT)RL — ZT1 sin(?HRT)RT + ZL2 COS(ZGTT)TL — ZT2 Sin(29TT)TT
= ZLl COS(QQRT) (C)

Note that in Rose and Nagy, Chimenti, Rokhlin [Physical Ultrasonics of Composites, Oxford
Univ. Press, (2011)], the argument of cosine on the right-hand-side is incorrectly written as
2HIL-

For E,., we have

solid 1
8_zy = —uyy, cos Oy, (—jkp1 sin br,) + ugry, cos Ory, (—jkry sinOry,) + urr sin Ory(—jkT1 sin Orr),
y=0
a solid 1
a = UjL, SIn HIL (—j kLl COS QIL) + URT, S QRL(_] kLl COS 9RL> — URT COS 0RT<_,] le COS ‘gRT)?
vl
solid 2
ou, . . .
5 = wrr, sin O, (jkra cos Orr,) + wpr cos Opr(jkra cos Orr),
vl
solid 2
Ou, : . ,
5 = —wpy, €08 Oy (jkra cos Orr,) + wry, sin Opr (jkrr cos Opr).
y=0

So, for continuity of shear waves at y = 0, we have

solid 1

1
2N1§<uy,z + uz,y) = 2M2§(uy,z + uz,y)
y=0

Inserting the above-calculated derivatives,

2w . 2w ) e, .
f11 ( J—uy, sin Oy, cos Oy, — j—uRy, sin Ory, cos Ory, + J —uRT(Cos2 Orr — sin® Orr)
CL1 CL1 CcT1

2w w
= Lo ( j =y, sin Oy, cos Oy, + j—upr(cos?® fpr — sin? GTT)>
CL2 CT2

Canceling the common 7 and w,

10



ﬂ sin(QHIL) - &RL Sin(291L> + ﬂ}%L COS(?@RL) = ﬁTL SiH(ZHTL> + ﬂTT COS(?GTT)
CL1 CL1 CT1 CL2 CT2

M1 P1 P [H1  CTi CT1
_— = _— —_ —_— = —/ g Z —_— R
cri o\ A2 H Vi pro e prits o (CLl)

Noting that

we have
CT1 . Cr2 \ .
_ZTI (C_> sm(20TL)RL+ZT1 COS(QQRT)RT - ZT2 <C_> S1H<29TL>TL — ZT2 COS(ZQTT)TT
L1 L2
= —ZT1 <Cﬂ) SiH(ZQIL)
CL1
Rearranging,
Cr1\ . Cr2 \ .
RLZT1 <C_) Sln(29TL)—RTZT1 COS(2@RT) + TLZT2 <C_) Sln(29TL) - TTZT2 COS(QQTT)
L1 L2

— Zn (—) sin(20n.) (D)

Cr1

Putting everything together...

If we write
T
r = {RL TL RT TT}
and

T
bL = {COS QIL sin QIL ZLl COS(Q@RT) ZT1 (@> Sin(?@IL)} s
CL1

the full reflection-transmission problem can be written as

[M ].’B = bL
where
cos ORy, cos 011, sin OrT — sin O
[M] . —sin QRL sin QTL COS QRT COS GTT
- _ZLl COS 20RT ZLQ COS 29TT —ZT1 sin QHRT —ZT2 sin 29TT

ZTl (CTI/CLI) sin 29RL ZTQ (CT2/CL2) sin 2‘9TL _ZTl COS 29RT ZT2 COS 29TT

11



3 Transverse (S-wave) incidence

Geometry and material properties

The material properties are the same as in the previous section. The definitions are also the
same, with the addition of d;r denoting the angle of the incident shear (T for transverse)
wave.

&0 i

T

‘-

S,
—
Z

The incident S-wave displayed above is given by
wrp = {uz} _ {um cos HIT} pi(wttxi)
Uy uyT Sin Ot

XiT = —kr12sin Orp + kr1y cos Orr

where

Here we note that the angle of propagation, mn, is captured in the phase yr, while the
polarization direction, nP, is captured in the components of the displacement vector.

Applying the continuity conditions. ..

Continuity of (a) now requires incident amplitudes to be

urr sin QIT

Matching the phases for all z at y = 0 means

XIT = XRL = XRT = XTL = XTT

The first and third equalities recover the law of reflection:

Orr = O

and the remaining four equalities recover Snell’s law:

sin eIT sin HRL sin QTL sin QTT

cT1 CL1 Cr2 CT2

So, continuity condition (a) becomes

12



R cosOgy, + R sin gy + Ti' cos Ory, — Tip sin fpp = — sin Oy (A1)

where

RT __ URL
urr
RT — URT
T=—
urr
77 _ uTL
L=
urr

u
T  UWIT
Tf = —
urr

Continuity equation (b) requires the incident z-amplitude to be

Uurt COS ‘91T
which yields
T T T T _
— R} sin gy, + Ry cosOrr + 17, sinfry, — Tip cos Opp = cos Orr (BY)
For continuity of normal stress,
solid 1 solid 2
Ty, =Ty
y=0 y=0

So in solid 1, at y = 0,

solid 1
gy

dy

= UIT sin QIT (jle COS HIT) + URL, COS QRL(_jkLl COS QRL) + URT COS QRT(_jle COS GRT)a

y=0

and in solid 2, at y =0

solid 2
Ou,

dy

= —UTt1, COS GTL (jk'LQ COS GTL) “+ urL sin ‘9TT (jkTL COS 9TT> .

y=0
Likewise, for E,.,

solid 1
Uy

0z

= Uit COS QIT(—jle sin HIT) + URL sin HRL(_jkLl COS QRL) — URT COS QRT(—j/{?Tl sin QRT)a

y=0

and in solid 2, at y =0

13



solid 2
Uy

0z

y=0

= UTL sin QTL(_j kLQ sin QTL) =+ U7y, COS QTT (] kTL sin HTT) .

Therefore, the urr term becomes

AL+ 2 Al
——— gin Oy cos Oypurr — — sin Oy cos Orrugr
CT1 CT1
Regrouping,
AL, . .
— (sin fyr cos Oy — sin Oyr cos Oyt) — Zrq sin 2601
CT1

So, continuity equation (c) becomes

_ZLIRE COS QQRT — ZTer}: sin 29RT+ZL2TLT COS 20TT - ZTQTTT sin 2‘9TT

= _ZTl sin 20TT (CT)
For continuity of shear stress,
solid 1 solid 2
T,. =T,
y=0 y=0

The strains are slightly altered because of the different polarization of the incident waves:

solid 1
8_zy = —uyr sin Orp(—jkr sin Orr) + ury, cos Ory, (—jkry sin fry,) + ugr sin Orr(—jkr sin Orr),
y=0
a solid 1
o = uyr cos O (jkT1 cos Orr) + ury sin Oy, (—jkr1 cos Ory,) — ugrr cos Orr(—jkT1 cos Orr)
y=0

Continuity of shear stress still requires

O il e Uil

The only changed components are those detailed below:

LW LW,
(ty,» + Uz y)iT = | —j— sin® Oy + j— cos” O | wir
11 CT1

jw .
= —(COS2 GIT — SlIl2 QIT)UIT
CT1
jw
= — COS<201T>UIT
€11

14



Substituting this into the full relationship for the continuity of shear stress, we find
& COS(QQIT) — &RE Sin(201L) + £Rr¥ COS(QQRT) = ﬁTE sin(291T) + ﬁTTT COS(29TT)
CT1 CL1 CT1 CL2 CT2

Identifying Z11 = p1/cr1 and Zrg = o/ cre, the above becomes

REZTl (?) sin(29RL) — R%ZTl COS(Z@RT)—FTI’JTZTQ (?) sin(QHTL) -+ T%ZTQ <?) COS(29TT)
L1 L2 L1

= Z11 cos(20rr) (Df)

Putting everything together...

Combining (At), (Bt), (CT), (Df) yields a different b vector, by, which satisfies [M]x = br,
where [M] and x are as defined in the previous section.

T
bT = { — sin HIT COS QIT — ZTI sin(291T) ZTl COS(Z@IT)} s

4 Comments on Rose’s presentation of this topic (Ch. 5)

Figure 5.1 of Rose gives the following conventions for the incident, reflected, and transmitted
waves for a two medium problem where both media are isotropic elastic solids.

The text gives a matrix relationship [M]x = a for the reflection-transmission problem where
@ and [M] can be written in the same form regardless of the incident wave type (longitudinal
or vertically-polarized shear (SV) waves) as long as both materials are elastic solids. Slight
modification to Rose’s notation allow us to write those terms as

15



and

—cosarr sin apr — €0s BTL, sin AT
(M] = —sinarr COS OTT sin B, cos B
—kp1(A1 +2p1) cos2art  kripasin2arr  kpa(Ae + po)cos 2Bt krope sin 28T
—ky,1p1 sin 27 —kr1p1 cos 2aT —krop1 sin 267y, —kropz cos 2B

The vector & here replaced the one provided by Rose because we will always have reflected
and transmitted longitudinal and transverse waves whether we have a longitudinal or trans-
verse wave incident, making the first subscript in his notation superfluous. The adopted
symbol for the transmission coefficient, 7', is employed rather than Rose’s D. Now, since we
are only concerned with incident longitudinal waves, the relevant a vector provided by Rose
is

— cos oy,
sin af,
kri (A1 4 2u1) cos 2ay,
—kp1 1 sin 2ay,

Unfortunately, there are several errors in this matrix expression. One annoying detail is that
the final two rows of [M] and the vector a contain wavenumbers, k = w/¢, when the common
w cancels.

The equations below provide the corrected form of [M] and a for longitudinal wave incidence
which can be simplified for the case of a fluid-solid configuration to yield the correct approx-
imation of the reflected and transmitted displacement amplitudes. First, let’s re-define the
angles using a more intuitive naming convention:

ap, — QIL T — QIT
arr — O, Brr — O11,
ary = Orr  Srr — OrT

Here the first subscript represents incident, reflected, or transmitted as I, R, and T, re-
spectively, and the second subscript denotes the wave type with L = longitudinal and T =
transverse/shear. Using this convention and correcting mistakes in Rose (detailed in the
scanned notes and above) [M] and a in Rose’s form for longitudinal wave incidence become

— cos ORrL, — sin Orr — cos Oy, sin O

(M) = — sin ORy, cos ORrT sin 61, cos O
— 71,1 cos 20rT —Z71 8in 20RT Z1,9 €08 20T — Zmg sin 201
_ZTl (CTl /CLl) sin 20RL ZTl COS 20RT —ZT2 (CTQ/CLQ) sin 20TL —ZT2 COS 20TT

and

16



— cos O,
sin QIL
21,1 cos 20T
—ZT1(CT1/CL1) sin 201,

Note that this matrix looks different from the one provided in Eq. 1. This is primarily due
to the fact that Eq. 1 assumes that the vector of unknowns is @ = [Ry, Ty, Rt T T]T while
Rose’s text uses the order @ = [Ry, Rr Ty, TT]T. We further observe that the inclusion of
Orr in a is not a typo, but due to a relationship following Eq. 5.86 provided in chapter 5
of Wave Propagation in Elastic Solids by J.D. Achenchach. The various angles of incidence
can be found using expressions for Snell’s law that were provided in class. Direct derivation
of the reflection and transmission coefficients verifies that this expression can be correctly
simplified for the case where an incident pressure (longitudinal) wave in a fluid is incident
on an elastic solid.

5 Additional observations

For multiple layers, this can be handled sameas with fluids, by introducing a phase For-
tunately, this is somewhat simpler than expected since we can essentially solve for R — T
conditions when pairs of incident waves are incident on an interface. |[Thompson-Haskell
Method] (Rose chapter 5.3).

:‘\A
- _%N{%&d\z Wornes l"U‘v 1[01' N -~ .
This creates an elastic wave guide = Lamb modes, i.e. plate waves. We will discuss this
in more detail later in the class.

We can solve the problem of incident P- and S-wave pairs as well, but we will look at the
problem in detail as Lamb waves come into the picture.

What do R and T look like vs. angle of incidence? Usually, smooth curves are expected,
unless the critical angle is subtended (see Rose pg. 58).

17



Sum fields due to incident longitudinal and shear waves at each interface.

S-ware Tntidual |-

/
Y

Note that this is useful for 1-sided material testing.
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