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1 Introduction

The sketch above shows either an incident longitudinal (P ) or transverse (S) wave (or both).
We must establish continuity of velocity (or displacement) and traction at x3 = 0. We define

v = v1î1 + v3î3, (i)

t = t1î1 + t3î3 = Tijnj, (iia)

v1 and v3 are obtained from incident, reflected, and transmitted angles.

We want to know t on the x3 = 0 plane. Therefore, n must be normal to that plane, i.e.,
n = ⟨0, 1⟩ for 2D. The stress tensor becomes

T =

[
T11 T13

T31 T33

]
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and the tension becomes

t =

[
T11 T13

T31 T33

][
0
1

]
=

[
T13

T33

]
So,

t = T13î1 + T33î3 (iib)

Each component of v and t must be continuous across the interface:

vI1,T + vI1,L + vR1,T + vR1,L = vT1,T + vT1,L (iiia)

vI3,T + vI3,L + vR3,T + vR3,L = vT3,T + vT3,L (iiib)

T I
13,T + T I

13,L + TR
13,T + TR

13,L = TT
13,T + TT

13,L (iiic)

T I
33,T + T I

33,L + TR
33,T + TR

33,L = TT
33,T + TT

33,L (iiid)

So, there are four equations for four unknowns: AR
T, A

R
L , A

T
T, A

T
L . The equations are usually

solved in terms of reflection and transmission coefficients, which are ratios of the unknown
amplitudes to the “known” (or assumed) amplitudes of the incident fields.

Using the notation provided in Rose’s Ch. 5, the reflection and transmission coefficients for
longitudinal and transverse waves given an incident longitudinal (P -wave) are defined as:

RLL =
AR

L

AI
L

,

RLT =
AR

T

AI
L

,

TLL =
AT

L

AI
L

,

TLT =
AT

T

AI
L

.

For shear (S-wave) incidence we define analogous coefficients:

RTL =
AR

L

AI
T

,

RTT =
AR

T

AI
T

,

TTL =
AT

L

AI
T

,

TTT =
AT

T

AI
T

.
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We now need to relate the velocity to the displacement field, u, the stress, T , and strain,
E, state using following relationships:

v =
∂u

∂t
= jωu (for time harmonic waves),

and

Eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

The latter relationship can be specialized to yield the following elements of the strain tensor:
E11 = u1,1, E33 = u3,3, and E13 = 1

2
(u1,3 + u3,1), which will be used in the stress-strain

relationship in order to find expressions for the continuity of traction at the boundary between
dissimilar elastic solids.

We now employ Hooke’s law for an isotropic solid to write the following expressions for the
components of the stress tensor in terms of the strain

T13 = 2µE13 = µ(u1,3 + u3,1),

T33 = λ(E11 + E33) + 2µE33 = ME33 + λE11,

where M ≡ λ+ 2µ is the plane wave modulus of the material. By substituting the assumed
form of the solution for time-harmonic plane waves form into these relations, we can find a
set of four linear equations which are dependent on the material properties and the angle of
incidence in matrix-vector form provided below,

[M ]x = b (1)

where

• [M ] is a 4× 4 matrix of constants (µ1, λ1, µ2, λ2, θRL, θRT, . . . ).

• x is a 4× 1 vector of Rs and T s

• b is a 4× 1 vector of “known” inputs (µ1, λ1, θI)

Those four equations can be solved for the reflection and transmission coefficients for any
angle of incidence and for any combination of material half-spaces. Note that [M ] is does
not change between cases of shear and longitudinal incidence but the vector in inputs, b,
will change depending on incident wave type.

Summary of results

The derivations provided in Sec. (2) and (3) arrive at the following results for the system of
equations provided in Eq. 1.

The matrix [M ] is given by
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[M ] =


cos θRL cos θTL sin θRT − sin θTT

− sin θRL sin θTL cos θRT cos θTT

−ZL1 cos 2θRT ZL2 cos 2θTT −ZT1 sin 2θRT −ZT2 sin 2θTT

ZT1(cT1/cL1) sin 2θRL ZT2(cT2/cL2) sin 2θTL −ZT1 cos 2θRT ZT2 cos 2θTT

 (2)

Incident longitudinal waves

Incident longitudinal waves satisfy

[M ]x = bL

where

x =
{
RL TL RT TT

}T
(3)

bL =
{
cos θIL sin θIL ZL1 cos(2θRT) ZT1

(
cT1

cL1

)
sin(2θIL)

}T

, (4)

Incident shear waves

Incident shear waves satisfy

[M ]x = bT

where

bT =
{
− sin θIT cos θIT − ZT1 sin(2θIT) ZT1 cos(2θIT)

}T

. (5)

The sections that follow provide the detailed derivation of these matrix equations.
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2 Longitudinal (P -wave) incidence

Geometry and material properties

Definitions:

• PI = incident P -wave

• PR = reflected P -wave

• PT = transmitted P -wave

• ST = transmitted S-wave

• θIL = angle of P -wave incidence (L for longitudinal)

• θRT = angle of S-wave reflection (T for transverse)

• θRL = angle of P -wave reflection

• θTT = angle of S-wave transmission

• θTL = angle of P -wave transmission

For x = 1, 2. . .

• ρxc
2
Lx = (λx + 2µx) = Mx

• ρxc
2
Tx = µx

• ZLx = ρxcLx =
√
ρxMx

• ZTx = ρxcTx =
√
ρxµx
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Continuity Conditions

At y = 0,

u
(1)
y = u

(2)
y , u

(1)
z = u

(2)
z

T
(1)
yy = T

(2)
yy , T

(1)
yz = T

(2)
yz

with

(a) uy =⇒ u
(y)
IL + u

(y)
RL + u

(y)
RT = u

(y)
TL + u

(y)
TT

(b) uz =⇒ u
(z)
IL + u

(z)
RL + u

(z)
RT = u

(z)
TL + u

(z)
TT

(c) Tyy =⇒ T IL
yy + TRL

yy + TRT
yy = TTL

yy + TTT
yy

(d) Tyz =⇒ T IL
yz + TRL

yz + TRT
yz = TTL

yz + TTT
yz

And we recall:

Tyy = λ(Eyy + Ezz) + 2µEyy = (λ+ 2µ)Eyy + λEzz

Tyz = 2µEyz

with Eij =
1
2
(uy,z + uz,y).

Assume the displacements have the form. . .

uIL =

{
uIL sin θIL
−uIL cos θIL

}
ej(ωt+χIL); χIL = −kL1z sin θIL + kL1y cos θIL

uRL =

{
uRL sin θRL

uRL cos θRL

}
ej(ωt+χRL); χRL = −kL1z sin θRL + kL1y cos θRL

uRT =

{
−uRT sin θRT
−uRT cos θRT

}
ej(ωt+χRT); χRT = −kT1z sin θRT + kT1y cos θRT

uTL =

{
uTL sin θTL

−uTL cos θTL

}
ej(ωt+χTL); χTL = −kL2z sin θTL + kL2y cos θTL

uTT =

{
uTT sin θTT

−uTT cos θTT

}
ej(ωt+χTT); χTT = −kT2z sin θTT + kT2y cos θTT

with

u =

{
uz

uy

}
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The continuity condition (a) becomes. . .

−uIL cos θILe
j(ωt+χIL)+uRL cos θRLe

j(ωt+χRL) + uRT cos θj(ωt+χRT)

= −uTL cos θTLe
j(ωt+χTL) + uTT cos θTTe

j(ωt+χTT) (a)

The common ejωt time-dependence cancels out. We also note that for χ
RT

to be constant
(i.e., phase matching of uy at all z),

χIL = χRL = χRT = χTL = χTT

Expressing the trace wavenumbers in terms of the frequency, speed, and angle,

ω

cL1
sin θIL =

ω

cL1
sin θRL =

ω

cT1

sin θRT =
ω

cL2
sin θTL =

ω

cT2

sin θTT

The first equality above shows that θRL = θIL. Canceling the common ω, the remaining four
equalities recover Snell’s law:

sin θIL
cL1

=
sin θRT
cT1

=
sin θTL

cL2
=

sin θTT

cT2

Then, continuity condition (a) becomes

−uIL cos θIL + uRL cos θRL + uRL cos θRL = −uTL cos θTL + uTT cos θTT

Defining

RL =
uRL

uIL

RT =
uRT

uIL

TL =
uTL

uIL

TT =
uTT

uIL

,

continuity condition (a) becomes

RL cos θRL +RT sin θRL + TL cos θTL − TT sin θTT = cos θIL (A)

Similarly, continuity condition (b) becomes

uIL sin θIL + uRL sin θRL − uRT cos θRT = uTL cos θTL + uTT cos θTT

or, in terms of the above-defined reflection and transmission coefficients,

RL sin θRL −RT cos θRT − TL sin θTL − TT cos θTT = − sin θIL (B)
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Now for the stress equations. . .

We now need Eyy, Ezz, Eyz. Note that Eyy = uy,y = ∂uy

∂y
, which we need for both sides of

the interface. Since we have assumed the form uy =
∣∣uy

∣∣ ejχ(y),
Eyy =

∣∣uy

∣∣ ejχ(y)(j ∂χ
∂y

)
.

So in solid 1, at y = 0,

∂uy

∂y

∣∣∣∣∣
solid 1

y=0

= −uIL cos θIL(jkL1 cos θIL) + uRL cos θRL(−jkL1 cos θRL) + uRT cos θRT(−jkT1 cos θRT),

and in solid 2, at y = 0

∂uy

∂y

∣∣∣∣∣
solid 2

y=0

= −uTL cos θTL(jkL2 cos θTL) + uTL sin θTT(jkTL cos θTT).

Likewise, for Ezz,

∂uz

∂z

∣∣∣∣∣
solid 1

y=0

= uIL sin θIL(−jkL1 sin θIL) + uRL sin θRL(−jkL1 cos θRL)− uRT cos θRT(−jkT1 sin θRT),

and in solid 2, at y = 0

∂uz

∂z

∣∣∣∣∣
solid 2

y=0

= uTL sin θTL(−jkL2 sin θTL) + uTL cos θTT(jkTL sin θTT).

So condition (c) is written

Tyy

∣∣∣∣solid 1

y=0

= Tyy

∣∣∣∣solid 2

y=0

By the stress-strain relation,

(λ1 + 2µ1)E
solid 1
yy + λ1E

solid 1
zz = (λ2 + 2µu)E

solid 2
yy + λ2E

solid 2
zz

Substituting in the derivatives taken above,
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(λ1 + 2µ1)

(
−j

ω

cL1
cos2 θILuIL − j

ω

cL1
cos2 θRLuRL − j

ω

cT1

cos2 θRTuRT

)
+ λ1

(
−j

ω

cL1
sin2 θIL − j

ω

cL1
sin2 θRLuRL + j

ω

cT1

sin θRT cos θRTuRT

)
= (λ2+2µ2)

(
−j

ω

cL2
cos2 θTLuTL + j

ω

cT2

sin θTT cos θTTuTT

)
+ λ2

(
−j

ω

cL2
sin2 θTLuTL − j

ω

cT2

sin θTT cos θTTuTT

)
Rearranging yields

λ1

(
−(cos2 θIL + sin2 θIL)

uIL

cL1
− (cos2 θRL + sin2 θRL)

uRL

cL1
− (sin θRT cos θRT − sin θRT cos θRT)

uRT

cT1

)
+ 2µ1

(
− cos2 θIL

uIL

cL1
− cos2 θRL

uRL

cL1
− sin θRT cosRT

uRT

cT1

)
= λ2

(
−(cos2 θTL + sin2 θTL)

uTL

cL2
+ (sin θTT cos θTT − sin θTT cos θTT)

uTT

cT2

)
+ 2µ1

(
− cos2 θTL

uTL

cL2
+ sin θTT cosTT

uTT

cT2

)
So, we have

−(λ1+2µ1 cos
2 θIL)

uIL

cL1
− (λ1 + 2µ1 cos

2 θRL)
uRL

cL1
− µ1 sin(2θRT)

uRT

cT1

= −(λ2 + 2µ2 cos
2 θTL)

uTL

cL2
+ µ2 sin(2θTT)

uTT

cT2

−λ1 + 2µ1 cos
2 θRL

cL1
RL −

µ1

cT1

sin(2θRT)RT +
λ2 + 2µ2 cos

2 θTL

cL2
TL −

µ2

cT2

sin(2θTT)TT

=
λ1 + 2µ1 cos

2 θIL
cL1

(†)

Then, Achenbach chapter 5 (following equation 5.86) gives

λ1 + 2µ1 cos
2 θRL

µ1

=

(
cL1
cT1

)2

cos 2θRT,

which yields

λ1 + 2µ1 cos
2 θRL

cL1
= ZL1 cos 2θRT

Likewise, we find
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λ2 + 2µ2 cos
2 θRL

cL2
= ZL2 cos 2θTT

and

λ1 + 2µ1 cos
2 θIL

cL1
= ZL1 cos 2θRT

Then, equation (†) becomes

−ZL1 cos(2θRT)RL − ZT1 sin(2θRT)RT + ZL2 cos(2θTT)TL − ZT2 sin(2θTT)TT

= ZL1 cos(2θRT) (C)

Note that in Rose and Nagy, Chimenti, Rokhlin [Physical Ultrasonics of Composites, Oxford
Univ. Press, (2011)], the argument of cosine on the right-hand-side is incorrectly written as
2θIL.

For Eyz, we have

∂uy

∂z

∣∣∣∣∣
solid 1

y=0

= −uIL cos θIL(−jkL1 sin θIL) + uRL cos θRL(−jkL1 sin θRL) + uRT sin θRT(−jkT1 sin θRT),

∂uz

∂y

∣∣∣∣∣
solid 1

y=0

= uIL sin θIL(−jkL1 cos θIL) + uRL sin θRL(−jkL1 cos θRL)− uRT cos θRT(−jkT1 cos θRT),

∂uz

∂y

∣∣∣∣∣
solid 2

y=0

= uTL sin θTL(jkL2 cos θTL) + uTT cos θTT(jkT2 cos θTT),

∂uy

∂z

∣∣∣∣∣
solid 2

y=0

= −uTL cos θTL(jkL2 cos θTL) + uTL sin θTT(jkTL cos θTT).

So, for continuity of shear waves at y = 0, we have

2µ1
1

2
(uy,z + uz,y)

∣∣∣∣solid 1

y=0

= 2µ2
1

2
(uy,z + uz,y)

∣∣∣∣solid 2

y=0

Inserting the above-calculated derivatives,

µ1

(
j
2ω

cL1
uIL sin θIL cos θIL − j

2ω

cL1
uRL sin θRL cos θRL + j

ω

cT1

uRT(cos
2 θRT − sin2 θRT)

)
= µ2

(
j
2ω

cL2
uTL sin θTL cos θTL + j

ω

cT2

uTT(cos
2 θTT − sin2 θTT)

)
Canceling the common j and ω,
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µ1

cL1
sin(2θIL)−

µ1

cL1
RL sin(2θIL) +

µ1

cT1

RL cos(2θRL) =
µ2

cL2
TL sin(2θTL) +

µ2

cT2

TT cos(2θTT)

Noting that
µ1

cT1

=

√
ρ1

λ1 + 2µ1

µ1

√
ρ1
µ1

√
µ1

ρ1
=

cT1

cL1

√
ρ1µ1 = ZT1

(
cT1

cL1

)
,

we have

−ZT1

(
cT1

cL1

)
sin(2θTL)RL+ZT1 cos(2θRT)RT − ZT2

(
cT2

cL2

)
sin(2θTL)TL − ZT2 cos(2θTT)TT

= −ZT1

(
cT1

cL1

)
sin(2θIL)

Rearranging,

RLZT1

(
cT1

cL1

)
sin(2θTL)−RTZT1 cos(2θRT) + TLZT2

(
cT2

cL2

)
sin(2θTL)− TTZT2 cos(2θTT)

= ZT1

(
cT1

cL1

)
sin(2θIL) (D)

Putting everything together. . .

If we write

x =
{
RL TL RT TT

}T
and

bL =
{
cos θIL sin θIL ZL1 cos(2θRT) ZT1

(
cT1

cL1

)
sin(2θIL)

}T

,

the full reflection-transmission problem can be written as

[M ]x = bL

where

[M ] =


cos θRL cos θTL sin θRT − sin θTT

− sin θRL sin θTL cos θRT cos θTT

−ZL1 cos 2θRT ZL2 cos 2θTT −ZT1 sin 2θRT −ZT2 sin 2θTT

ZT1(cT1/cL1) sin 2θRL ZT2(cT2/cL2) sin 2θTL −ZT1 cos 2θRT ZT2 cos 2θTT
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3 Transverse (S-wave) incidence

Geometry and material properties

The material properties are the same as in the previous section. The definitions are also the
same, with the addition of θIT denoting the angle of the incident shear (T for transverse)
wave.

The incident S-wave displayed above is given by

uIT =

{
uz

uy

}
=

{
uIT cos θIT
uIT sin θIT

}
ej(ωt+χIT)

where

χIT = −kT1z sin θIT + kT1y cos θIT

Here we note that the angle of propagation, n, is captured in the phase χIT, while the
polarization direction, np, is captured in the components of the displacement vector.

Applying the continuity conditions. . .

Continuity of (a) now requires incident amplitudes to be

uIT sin θIT

Matching the phases for all z at y = 0 means

χIT = χRL = χRT = χTL = χTT

The first and third equalities recover the law of reflection:

θRT = θIT

and the remaining four equalities recover Snell’s law:

sin θIT
cT1

=
sin θRL

cL1
=

sin θTL

cL2
=

sin θTT

cT2

So, continuity condition (a) becomes
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RT
L cos θRL +RT

T sin θRT + TT
L cos θTL − TT

T sin θTT = − sin θIT (A†)

where

RT
L =

uRL

uIT

RT
T =

uRT

uIT

TT
L =

uTL

uIT

TT
T =

uTT

uIT

Continuity equation (b) requires the incident z-amplitude to be

uIT cos θIT

which yields

−RT
L sin θRL +RT

T cos θRT + TT
L sin θTL − TT

T cos θTT = cos θIT (B†)

For continuity of normal stress,

Tyy

∣∣∣∣solid 1

y=0

= Tyy

∣∣∣∣solid 2

y=0

So in solid 1, at y = 0,

∂uy

∂y

∣∣∣∣∣
solid 1

y=0

= uIT sin θIT(jkT1 cos θIT) + uRL cos θRL(−jkL1 cos θRL) + uRT cos θRT(−jkT1 cos θRT),

and in solid 2, at y = 0

∂uy

∂y

∣∣∣∣∣
solid 2

y=0

= −uTL cos θTL(jkL2 cos θTL) + uTL sin θTT(jkTL cos θTT).

Likewise, for Ezz,

∂uz

∂z

∣∣∣∣∣
solid 1

y=0

= uIT cos θIT(−jkT1 sin θIT) + uRL sin θRL(−jkL1 cos θRL)− uRT cos θRT(−jkT1 sin θRT),

and in solid 2, at y = 0
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∂uz

∂z

∣∣∣∣∣
solid 2

y=0

= uTL sin θTL(−jkL2 sin θTL) + uTL cos θTT(jkTL sin θTT).

Therefore, the uIT term becomes

λ1 + 2µ1

cT1

sin θIT cos θITuIT − λ1

cT1

sin θIT cos θITuIT

Regrouping,

λ1

cT1

(sin θIT cos θIT − sin θIT cos θIT)− ZT1 sin 2θIT

So, continuity equation (c) becomes

−ZL1R
T
L cos 2θRT − ZT1R

T
T sin 2θRT+ZL2T

T
L cos 2θTT − ZT2T

T
T sin 2θTT

= −ZT1 sin 2θTT (C†)

For continuity of shear stress,

Tyz

∣∣∣∣solid 1

y=0

= Tyz

∣∣∣∣solid 2

y=0

.

The strains are slightly altered because of the different polarization of the incident waves:

∂uy

∂z

∣∣∣∣∣
solid 1

y=0

= −uIT sin θIT(−jkL1 sin θIT) + uRL cos θRL(−jkL1 sin θRL) + uRT sin θRT(−jkT1 sin θRT),

∂uz

∂y

∣∣∣∣∣
solid 1

y=0

= uIT cos θIT(jkT1 cos θIT) + uRL sin θRL(−jkL1 cos θRL)− uRT cos θRT(−jkT1 cos θRT)

Continuity of shear stress still requires

µ1(uy,z + uz,y)
solid 1
y=0 = µ2(uy,z + uz,y)

solid 2
y=0

The only changed components are those detailed below:

(uy,z + uz,y)IT =

(
−j

ω

cT1

sin2 θIT + j
ω

cT1

cos2 θIT

)
uIT

=
jω

cT1

(cos2 θIT − sin2 θIT)uIT

=
jω

cT1

cos(2θIT)uIT
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Substituting this into the full relationship for the continuity of shear stress, we find

µ1

cT1

cos(2θIT)−
µ1

cL1
RT

L sin(2θIL) +
µ1

cT1

RT
T cos(2θRT) =

µ2

cL2
TT
L sin(2θIT) +

µ2

cT2

TT
T cos(2θTT)

Identifying ZT1 = µ1/cT1 and ZT2 = µ2/cT2, the above becomes

RT
LZT1

(
cT1

cL1

)
sin(2θRL)−RT

TZT1 cos(2θRT)+TT
L ZT2

(
cT2

cL2

)
sin(2θTL) + TT

TZT2

(
cT1

cL1

)
cos(2θTT)

= ZT1 cos(2θIT) (D†)

Putting everything together. . .

Combining (A†), (B†), (C†), (D†) yields a different b vector, bT, which satisfies [M ]x = bT,
where [M ] and x are as defined in the previous section.

bT =
{
− sin θIT cos θIT − ZT1 sin(2θIT) ZT1 cos(2θIT)

}T

,

4 Comments on Rose’s presentation of this topic (Ch. 5)

Figure 5.1 of Rose gives the following conventions for the incident, reflected, and transmitted
waves for a two medium problem where both media are isotropic elastic solids.

The text gives a matrix relationship [M ]x = a for the reflection-transmission problem where
x and [M ] can be written in the same form regardless of the incident wave type (longitudinal
or vertically-polarized shear (SV) waves) as long as both materials are elastic solids. Slight
modification to Rose’s notation allow us to write those terms as
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and

[M ] =


− cosαLT sinαTT − cosβTL sinβTT

− sinαLT cosαTT sinβTL cosβTT

−kL1(λ1 + 2µ1) cos 2αTT kT1µ1 sin 2αTT kL2(λ2 + µ2) cos 2βTT kT2µ2 sin 2βTT

−kL1µ1 sin 2αLT −kT1µ1 cos 2αTT −kL2µ1 sin 2βTL −kT2µ2 cos 2βTT


The vector x here replaced the one provided by Rose because we will always have reflected
and transmitted longitudinal and transverse waves whether we have a longitudinal or trans-
verse wave incident, making the first subscript in his notation superfluous. The adopted
symbol for the transmission coefficient, T , is employed rather than Rose’s D. Now, since we
are only concerned with incident longitudinal waves, the relevant a vector provided by Rose
is

a =


− cosαL

sinαL

kL1(λ1 + 2µ1) cos 2αL

−kL1µ1 sin 2αL

 .

Unfortunately, there are several errors in this matrix expression. One annoying detail is that
the final two rows of [M ] and the vector a contain wavenumbers, k = ω/c, when the common
ω cancels.

The equations below provide the corrected form of [M ] and a for longitudinal wave incidence
which can be simplified for the case of a fluid-solid configuration to yield the correct approx-
imation of the reflected and transmitted displacement amplitudes. First, let’s re-define the
angles using a more intuitive naming convention:

αL → θIL αT → θIT
αLT → θRL βTL → θTL

αTT → θRT βTT → θTT

Here the first subscript represents incident, reflected, or transmitted as I, R, and T, re-
spectively, and the second subscript denotes the wave type with L = longitudinal and T =
transverse/shear. Using this convention and correcting mistakes in Rose (detailed in the
scanned notes and above) [M ] and a in Rose’s form for longitudinal wave incidence become

[M ] =


− cos θRL − sin θRT − cos θTL sin θTT

− sin θRL cos θRT sin θTL cos θTT

−ZL1 cos 2θRT −ZT1 sin 2θRT ZL2 cos 2θTT −ZT2 sin 2θTT

−ZT1(cT1/cL1) sin 2θRL ZT1 cos 2θRT −ZT2(cT2/cL2) sin 2θTL −ZT2 cos 2θTT


and
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a =


− cos θIL
sin θIL

ZL1 cos 2θRT
−ZT1(cT1/cL1) sin 2θIL

 .

Note that this matrix looks different from the one provided in Eq. 1. This is primarily due
to the fact that Eq. 1 assumes that the vector of unknowns is x = [RL TL RT TT]

T while
Rose’s text uses the order x = [RL RT TL TT]

T . We further observe that the inclusion of
θRT in a is not a typo, but due to a relationship following Eq. 5.86 provided in chapter 5
of Wave Propagation in Elastic Solids by J.D. Achenchach. The various angles of incidence
can be found using expressions for Snell’s law that were provided in class. Direct derivation
of the reflection and transmission coefficients verifies that this expression can be correctly
simplified for the case where an incident pressure (longitudinal) wave in a fluid is incident
on an elastic solid.

5 Additional observations

For multiple layers, this can be handled sameas with fluids, by introducing a phase For-
tunately, this is somewhat simpler than expected since we can essentially solve for R − T
conditions when pairs of incident waves are incident on an interface. [Thompson-Haskell
Method] (Rose chapter 5.3).

This creates an elastic wave guide =⇒ Lamb modes, i.e. plate waves. We will discuss this
in more detail later in the class.

We can solve the problem of incident P - and S-wave pairs as well, but we will look at the
problem in detail as Lamb waves come into the picture.

What do R and T look like vs. angle of incidence? Usually, smooth curves are expected,
unless the critical angle is subtended (see Rose pg. 58).
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Sum fields due to incident longitudinal and shear waves at each interface.

Note that this is useful for 1-sided material testing.
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