Part 1.  Solve the 2D wave equation in #(r,0) for a pie-shaped drumhead subtending
45°, where one edge, say 0 = 0, is free, while the curved boundary at r = a and the other
edge at O = 45° are clamped. Find the eigenfrequencies and identify the lowest one.
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Start with the general solution:
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Applying the boundary condition at 6 = 0 gives

on
00 6-0
—A,,msin0 + B,,mcos0=0 — B, =0

~0

Applying the boundary condition at 6 = 7/4 gives
A cos(mm/d) =0 =— mu/d= %(21 1),1=1,2,3,...
orm=4l—-2=2,6,10,.... Meanwhile, applying the radial boundary results in
Jm(ka)=0 = kyn = ayn/a

Thus the solution is
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and the eigenfrequencies are
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The lowest eigenfrequency corresponds to m =2 and n = 1:
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Part 2.  Suppose there is an initial displacement on the membrane of 7, which would
correspond to a “plucked” initial condition. Also assume there is no initial velocity:
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7(r,0,0) =0

Apply the initial condition to the eigenfunctions given by equation (i) to find C,,, and
D,,,. Leave the relevant expansion coefficients in integral form, and evaluate the integral
for m = 0 only. Compare the coefficients for m = 0 to Blackstock’s equation (11.B-13) on
page 400 for a circular drumhead clamped at r = a subject to the analogous “plucked”
initial condition.

Taking the derivative of equation (i) and setting it equal to 0 at + = 0 (the second
initial condition above) shows that D,,,, = 0. Meanwhile, setting t = 0 to equation (i) and
applying the initial displacement boundary condition gives
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The coefficient C,,, is found by using two orthogonality relations: the cosine orthogonal-
ity relation for m,q > 1,
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and the Bessel orthogonality,
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They can be applied in any order. Here the cosine orthogonality is applied first by multi-
plying both sides by cos g6 d6 and integrating from 6 = 0 to 6 = 7
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The equation above is now multlphed by Ju (@ r/a)rdr and integrated from r = 0 to
r=a
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The Bessel orthogonality relation is applied, leading to an integral equation for the ex-
pansion coefficients,
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I think the integral above can be taken analytically for only the m = 0 case, in which case
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is Blackstock’s expansion coefficient for the plucked circular drumhead. Apparently,
wedge’s modes are decreased by a factor of 2/ ~ 0.64 for the m = 0 family of modes.



