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1 Derivation of the HK integral

The HK integral is the solution pprq to the inhomogenous Helmholtz equation,

∇2pprq ` k2pprq “ ´fprq, (1)

where the inhomogenity is described by the distribution function fprq. To derive the HK

integral, first recall that the free space Green’s function gpr|r0q solves

∇2gpr|r0q ` k2gpr|r0q “ ´δpr ´ r0q. (2)

Also suppose χprq is solution to the homogeneous Helmholtz equation:

∇2χ ` k2χ “ 0. (3)

Since the general solution is the sum of the inhomogeneous and homogeneous solutions,

Gpr0|rq “ gpr0|rq ` χprq is the general solution to equation (2). That is,
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∇2Gpr|r0q ` k2Gpr|r0q “ ´δpr ´ r0q. (4)

Next, equation (4) is multiplied by pprq and subtracted from the product of G and equation

(1):

Gpr|r0q∇2pprq ´ pprq∇2Gpr|r0q “ ´fprqGpr|r0q ` pprqδpr ´ r0q (5)

Now switching the location of the source from r0 to r, fpr0q ÞÑ fprq, so equation (5) becomes

Gpr|r0q∇2pprq ´ pprq∇2Gpr|r0q “ ´fpr0qGpr|r0q ` pprqδpr ´ r0q (6)

Further, since G satisfies reciprocity, Gpr|r0q “ Gpr0|rq. Recall also that δpr ´ r0q “

δpr0 ´ rq. Making these transformations to equation (6) yields

Gpr0|rq∇2ppr0q ´ ppr0q∇2Gpr0|rq “ ´fpr0qGpr0|rq ` ppr0qδpr0 ´ rq (7)

Integrating (7) in the ‘0’ coordinates,

¡

␣

Gpr0|rq∇2ppr0q´ppr0q∇2Gpr0|rq
(

dv0 “

¡

␣

´ fpr0qGpr0|rq ` ppr0qδpr0 ´ rq
(

dv0

Applying the sifting property of the delta function on the right-hand-side, writingGpr0|rq∇2ppr0q´

ppr0q∇2Gpr0|rq “ ∇0 ¨ pGpr0|rq∇ppr0q ´ ppr0q∇Gpr0|rqq, and solving for ppr0q,

2



S0 n̂0

Figure 1: Closed surface S0 subjected to a source condition at the surface and containing no
sources in the enclosed volume.

pprq “

¡

fpr0qGpr0|rqdv0 `

¡

∇0 ¨
␣

Gpr0|rq∇ppr0q ´ ppr0q∇Gpr0|rq
(

dv0

Utilizing the divergence theorem on the left-hand-side, writing the gradients as B

Bn0
, and

utilizing Gpr0|rq “ Gpr|r0q (mainly to match Dr. Hamilton’s notes),

pprq “

¡

fpr0qGpr0|rqdv0 `

£

␣

Gpr|r0q
B

Bn0
ppr0q ´ ppr0q

B

Bn0
Gpr|r0q

(

dS0 (HK integral)

This is the Helmholtz-Kirchoff integral, which is used in section (2) to derive the Rayleigh

integral.

2 Derivation of the first Rayleigh integral

Consider a closed surface S0 that is subjected to a velocity source condition on the boundary

and contains no sources within the enclosed volume, as illustrated in figure (1). Since there

are no sources in the enclosed volume, the volume integral term of the (HK integral) vanishes,

leaving

pprq “

£

␣

Gpr|r0q
B

Bn0
pprq ´ pprq B

Bn0
Gpr|r0q

(

dS0 (8)
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S0n̂0

u0px0, y0qe
jωt

Figure 2: Specialization of figure (1) to a vibrating velocity source at z “ 0. Note that
the unit normal vector n̂0 points in the opposite direction as the z-axis. The arc of the
hemisphere is sufficiently far away such that the pressure goes to 0 there. Therefore, the
surface at z “ 0 is the only contribution to the integral. See Sommerfeld radiation condition

The boundary of interest is a rigid plane at z “ 0, portions of which vibrate in the z-direction,

as shown in figure (2). A velocity source condition is defined:

upx, y, z “ 0, tq “ u0px0, y0qe´iωt (9)

Equation (9) can be incorporated into the second factor of equation (8) using the momentum

equation, Bppr0q

Bn0
“ ´

Bppx0,y0q

Bz0
“ ´ρ0

Bupx,y,z“0,tq
Bt

, which simplifies to

Bppx0,y0q

Bz0
“ ρ0

Bu0px0,y0qe´iωt

Bt

“ ´iωρ0u0px0, y0q (second factor)

Next, it is desirable to choose a Green’s function that makes the underlined term in equation

(8) vanish (i.e., BG
Bn0

“ 0 on S0). Denoting

g˘pr|r0q “
eikR˘

4πR˘

,
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where

R˘ “
a

px ´ x0q2 ` py ´ y0q2 ` pz ¯ z0q2,

one such choice is

Gpr|r0q “ g`pr|r0q ` g´pr|r0q (10)

Upon evaluating this Green’s function at the location of the source, z0 “ 0 the first factor

of equation (8) becomes

Gpr|r0q

∣∣∣∣
z0“0

“ 2gpr|r0q

“
eikR

4πR
`

eikR

4πR

“
eikR

2πR
(first factor)

where R “
a

px ´ x0q2 ` py ´ y0q2 ` z2. Substituting the (second factor) and the (first

factor) into equation (8) gives

pprq “

£

p´iωρ0u0px0, y0qq
eikR

2πR
dS0

“ ´i
ρ0c0k

2π

£

u0px0, y0qe
ikR

R
dS0 (first Rayleigh integral)

3 Derivation of the second Rayleigh integral

Consider a closed surface S0 that is subjected to a pressure source condition on the boundary

and contains no sources within the enclosed volume, as illustrated in figure (3). Since there

are no sources in the enclosed volume, the volume integral term of the (HK integral) vanishes,
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Figure 3: Specialization of figure (1) to a vibrating rigid pressure source at z “ 0.

leaving

pprq “

£

␣

Gpr|r0q
B

Bn0
pprq ´ pprq B

Bn0
Gpr|r0q

(

dS0 (11)

The boundary of interest is a pressure source at z “ 0 that vibrates in the z-direction. A

pressure source condition is defined:

ppx, y, z “ 0, tq “ p0px0, y0qe
´iωt (12)

Equation (12) is incorporated into the first factor of equation (11) by simply suppressing the

e´iωt time dependence.

Next, it is desirable to choose a Green’s function that makes the underlined term in

equation (11) vanish (i.e., G “ 0 on S0). Denoting g˘pr|r0q as in section (2), one such choice

is

Gpr|r0q “ g`pr|r0q ´ g´pr|r0q (13)
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Upon evaluating this choice of the Green’s function at z0 “ 0, the location of the source,

Gpr|r0q in the underlined term vanishes as desired:

Gpr|r0q

∣∣∣∣
z0“0

“
eikR

4πR
´

eikR

4πR
“ 0

where R “
a

px ´ x0q2 ` py ´ y0q2 ` z2 as in section (2).

Meanwhile, the second factor of equation (8) becomes

B

Bn0

Gpr|r0q

∣∣∣∣
z0“0

“ ´
1

4π

B

Bz0

«

eik
?

px´x0q2`py´y0q2`pz´z0q2

a

px ´ x0q
2 ` py ´ y0q2 ` pz ´ z0q2

´
eik

?
px´x0q2`py´y0q2`pz´z0q2

a

px ´ x0q
2 ` py ´ y0q2 ` pz ´ z0q2

ff
∣∣∣∣∣
z0“0

“
1

2π

´

ikeikRzR´2
` eikRzR´3

¯

“ ´
z

2π

eikR

R

ˆ

´
ik

R
`

1

R2

˙

(second factor)

where again R “
a

px ´ x0q
2 ` py ´ y0q2 ` z2. Substituting the (second factor) and the (first

factor) into equation (8) gives

ppx, y, zq “

£

p0px0, y0q
z

2π

eikR

R

ˆ

´
ik

R
`

1

R2

˙

dS0

“
z

2π

£

p0px0, y0q

ˆ

´
ik

R
`

1

R2

˙

eikR

R
dS0 (second Rayleigh integral)

4 Accounting for the focusing

Figure (4) shows the distances of consideration when accounting for the curvature of the

transducer. Since the transducer is described by a section of a spherical surface centered at

point zT “ F , all the points on its surface satisfy
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Figure 4: The more detailed schematic above shows the distances of consideration when
accounting for the curvature of the transducer.

x2
T ` y2T ` pzT ´ F q

2
“ F 2

Solving the above for zT,

zT “
2F ´

a

4F 2 ´ 4px2
T ` y2Tq

2

The distance from a point on the transducer pxT, yT, zTq to a point on the phase plate

px1, y1, z1q is therefore given by RT “
a

px1 ´ xTq2 ` py1 ´ yTq2 ` pz1 ´ zTq2, where zT is as

defined above.

5 Sanity check

To validate the focusing modeled in section (4), the phase plate is removed from the model,

leaving a focused circular piston and a focal plane. The Fresnel approximation allows for

an analytical solution to this problem. Evaluated at the focal plane z “ F , the complex

pressure solution is [1]
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ppσ, F q “ ´ikρ0c0
eikF

F
eikσ

2{2F

˜

a2u0

2

2J1pkaσ{F q

kaσ{F

¸

(14)

where σ “
a

x2
0 ` y20 and where the term in parentheses is the Hankel transform of the source

function u0pσq. For ease of comparison, a one-dimensional result is desired. Setting y0 “ 0,

equation (14) becomes

ppx0, 0, F q “ ´ikρ0c0
eikF

F
eikx

2
0{2F

˜

a2u0

2

2J1pkax0{F q

kax0{F

¸

(15)

The magnitude and phase of the analytical solution above is compared to the magnitude

and phase of the numerical solution given by the first Rayleigh integral:

ppx0, 0, F q “ ´i
ρ0c0k

2π

£

S

V eikR

R
dS (16)

where R “
a

px0 ´ xTq2 ` py0 ´ yTq2 ` pz0 ´ zTq2. The comparison of equations (15) and

(16) is discussed in figure (5)
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Figure 5: The plots above compare the analytical and numerical pressure magnitude (left)
and phase (right). To facilitate the comparison, one-dimensional results are used by setting
y0 “ 0. The x-axis from ´10 mm to 10 mm is plotted above, but the analysis applies to the
two-dimensional results because the solution is symmetric about the z-axis. There is strong
agreement between the numerically and analytically found pressure magnitude, showing that
the model presented in section (4) is valid. The numerically found phase represents the exact
solution; the analytically found phase accumulates error farther from the origin because it
is the result of the Fresnel approximation.

6 Fourier acoustics

To solve the problem of an arbitrary pressure or velocity source vibrating in the z-direction,

the source’s surface can be treated as an infinite number of point sources, and the pressure

due to the surface is the integral of their contributions over the surface. This approach,

developed in sections (1)-(3), amounts to computing n double summations m times, where

n is the number of points chosen in the source plane and m is the number of points chosen

in the observation plane. The computation time is therefore quadratic in the number the

points chosen. The results presented in section (2) of the project report required „ 1.75

hours to run.

Fourier acoustics offers an exact numerical solution that is computationally much more

efficient than the approach followed in section (2) of the report. First start with the definition

of the 2D spatial Fourier transform:
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f̂pkx, kyq “ F tfpx, yqu “

8
ĳ

´8

fpx, yqejpkxx`kyyq dx dy (spatial Fourier transform)

with the inverse Transform defined as:

fpx, yq “ F´1
tf̂pkx, kyqu “

1

p2πq2

8
ĳ

´8

f̂pkx, kyqe´jpkxx`kyyq dkx dky

(inverse spatial Fourier transform)

Now consider a pressure wave propagating along the z-axis. The spatial part can be

described in complex-exponential form,

p̂ “ C1e
jkzz ` C2e

´jkzz

the Fourier transform of which is

p̂pkx, ky, zq “ p̂0pkx, kyqe´jkzz

where

p̂0pkx, kyq “ p̂pkx, ky, 0q “ F tppx, y, 0qu

In order to propagate the pressure field forward, a factor of e´jkzz is included in the spatial

Fourier transform of the pressure field. Thus

ppx, y, zq “ F´1
tp̂0pkx, kyqe´jkzzu “ F´1

tF tppx, y, 0que´jkzzu (Free-space propagation)
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The model set up as follows. The first Fourier transform is performed to propagate pressure

produced by the the velocity source towards the phase plate:

ppx, y, zq “ ρ0c0F
´1

"

k

kz
û0pkx, kyqe´jkzz

*

Next, the phase is factored into the pressure field to create the ejlφ vorticity. where φ is

arctan y{x. With the pressure field now given beyond the phase plate, the propagation of

that field towards arbitrary distance away from the plate can then be performed using the

free-space propagation equation.

7 Integral representation of Bessel function

A given integral representation of the Bessel function is [4]

Jnpηq “
1

2π

ż π

´π

eniφ´iη sinφ dφ (17)

We want to show that equation (17) is equivalent to the integral at hand (times the coefficient

einπ{2 which tacks on a real or complex unit):

einπ{2

2π

ż 2π

0

eniφ´iη cosφ dφ. (18)

Start by substituting φ ÞÑ φ ´ π
2
into equation (18).

einπ{2

2π

ż 2π

0

eniφ´iη cosφ dφ “
1

2π

ż 3π{2

´π{2

eniφ´iη sinφ dφ

“
1

2π

ż π

´π{2

eniφ´iη sinφ dφ `
1

2π

ż 3π{2

π

eniφ´iη sinφ dφ

Substituting φ ÞÑ φ ` π
2
into the second integral,
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einπ{2

2π

ż 2π

0

eniφ´iη cosφ dφ “
1

2π

ż π

´π{2

eniφ´iη sinφ dφ `
1

2π

ż ´π{2

´π

eniφ´iη sinφ dφ

“
1

2π

ż π

´π

eniφ´iη sinφ dφ

It is seen that 1
2π

şπ

´π
eniφ´iη sinφ dφ “ einπ{2

2π

ş2π

0
eniφ´iη cosφ dφ, and therefore

Jnpηq “
einπ{2

2π

ż 2π

0

eniφ´iη cosφ dφ.
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