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Abstract

Acoustic vortex beams have a wide range of applications in underwater, biomedical, physical,

and engineering acoustics. Studying their physical structure provides new perspectives that

may enhance the utility and precision of these applications. As such, the pressure field of a

vortex beam generated by a single-element transducer and phase plate is studied from four

perspectives: the Rayleigh integral, Fourier acoustics, the Fresnel approximation, and the

finite element method (FEM). The Rayleigh integral method replicates the results presented

in [2] by Terzi et al. The other three methods facilitate the study of various characteristics of

vortex beams. Notably, a semi-analytical solution is found in the near field, and an analytical

solution is found in the focal plane.

Section (1) outlines the problem. Section (2) presents the numerical integration of the

first and second Rayleigh integrals, replicating [2]. Sections (3) and (4) respectively offer

Fourier acoustics and Fresnel limit perspectives. Section (5) presents a finite element analysis.

Section (6) suggests how these results can enhance engineering applications of vortex beams.

The e´iωt convention is used.

1 Outline of the problem

To generate a vortex beam, Terzi et al. impart angular momentum to a propagating pressure

wave. The propagating wave is generated by a transducer, and the angular momentum is
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Parameter Description Value (mm)
z00 transducer depth 13.4
z01 distance from phase plate to outer edge of transducer 10
z1 distance from center of transducer to phase plate 23.4
z0 distance from center of transducer to plane of observation 100

Table 1: Positions of elements as reported in [2] measured from z “ 0 along the z-axis

Parameter Description Value Dimensions
F surface curvature radius of transducer 100 mm
D diameter of transducer 100 mm
f drive frequency of transducer 1.092 MHz
ρ0 density of water 1000 kg/m3

c0 speed of sound in water 1481 m/s

Table 2: Geometric and physical properties of transducer and background medium

imparted by a phase plate. Figure (1) shows the arrangement of these elements, and table

(1) provides their positions along the z-axis. Table (2) provides the material properties.
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Figure 1: Positions of the transducer, phase plate, and focal plane, respectively denoted by

subscripts T, 1, and 0.

The transducer is spherically focused and pulsates at frequency f (corresponding to

wavenumber k “ 2πf{c0) with normal vibration velocity amplitude V . The surface of

the transducer, denoted ST, has differential area dST. The distance from a point on
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the transducer pxT, yT, zTq to a point on the phase plate px1, y1, z1q is given by RT “
a

px1 ´ xTq2 ` py1 ´ yTq2 ` pz1 ´ zTq2, where zT “
2F´

?
4F 2´4px2

T`y2Tq

2
[3].

Meanwhile, the phase plate lies at z “ z1 “ z00 ` z01 and contributes vorticity to the

pressure field generated by the transducer. The surface of the phase plate, denoted S1, has

differential surface area dS1. The distance from the phase plate to a point on the focal plane

px0, y0, z0q is given by R0 “
a

px0 ´ x1q
2 ` py0 ´ y1q2 ` pz0 ´ z1q2.

Physically, the vorticity is achieved by varying the phase plate’s thickness over the polar

angle φ ” arctanpy1{x1q; the incident pressure wave accumulates a local phase depending

on the thickness through which it passes. Mathematically, the vorticity contributes a factor

of eiΦpφq to the complex-exponential form of solution. Since vortex beams are by definition

helices that repeat their angular behavior over many cycles in φ, eiΦpφq must be either

constant or periodic in 2π{l, where l “ the orbital number “ ˘1,˘2, . . . . That is,

Φpφq “

$

’

’

&

’

’

%

0, eiΦpφq is constant

lφ, where l “ ˘1,˘2, . . . , eiΦpφq is periodic in 2π{l

So, Φpφq “ lφ where l “ 0,˘1,˘2, . . . . The l “ 0 mode has no vorticity, the l “ ˘1 mode

features one equal-phase surface, and larger values of l correspond to families of l helicoids.

The phase is treated mathematically in sections (2), (3), and (4), and physically in section

(5). Following [2], the l “ 3 orbital number is considered throughout, and Φpφq is defined

as Φpφq “ lnπ
6

for pn´1qπ
6

ă φ ď nπ
6

where n “ 1, 2, . . . 12 in sections (2) and (3). To develop

an analytical solution, Φpφq is defined as Φpφq “ lφ for 0 ă φ ď 2π, in section (4).

There are two defining characteristics of the vortex beam: (1) its vanishing on-axis pres-

sure magnitude when projected on the transverse plane, and (2) its l-helicoid phase structure.

These features guide the discussion in the following sections.
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2 Rayleigh integral solution

To calculate the pressure field at the focal plane, the problem is split into two parts. The

first part involves calculating the pressure field generated by the transducer at z´
1 , a plane

on the z-axis infinitesimally less than z1. The pressure at this point is ppx1, y1, z
´
1 q and is

given by the first Rayleigh integral [4]:

ppx1, y1, z
´
1 q “ ´i

ρ0c0k

2π

£

ST

V eikRT

RT

dST (first Rayleigh integral)

where the variables are as defined in section (1). V can be factored out of the integral because

it is constant and can be set to unity since the results are presented in a dimensionless form.

The surface ST is the section of a sphere of radius F tangent to the origin such that the

projection of the surface on the z “ 0 plane has radius 50 mm, as reflected in the definition

of RT [4].

To numerically evaluate the (first Rayleigh integral), a 100 mm ˆ 100 mm plane at z “ 0

is discretized using a square mesh with elementary side length h “ λ{4.097 “ .331 mm.

Figure (2) is the result of this integration as observed from a 75 mm ˆ 75 mm plane at

z “ z´
1 discretized using a square mesh of h “ λ{2.731 “ .497 mm.

Figure 2: Normalized pressure magnitude |pppx1, y1, z
´
1 q|{ρ0c0u0 (left) and phase =ppx1, y1, z

´
1 q

(right) incident on the phase plate

As the pressure wave passes through the phase plate, it accumulates vorticity, so the

emerging pressure wave is ppx1, y1, z
`
1 q “ ppx1, y1, z

´
1 qe3iφ. The second Rayleigh integral [5]

treats ppx1, y1, z
`
1 q as a pressure source and calculates the pressure field at the focal plane
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z “ z0:

ppx0, y0, z0q “
1

2π

£

S1

ppx1, y1, z
`
1 q

z0 ´ z1
R0

ˆ

´
ik

R0

`
1

R2
0

˙

eikR0 dS1

(second Rayleigh integral)

where the variables are as defined in section (1). To numerically evaluate the (second

Rayleigh integral), the integral is taken over the 75 mm ˆ 75 mm plane of the phase plate.

Figure (3) is the result of this integration at a 5 mm ˆ 5 mm plane at z “ z0 “ F discretized

using a square mesh of h “ λ{40.958 “ 0.0331 mm. The results match those in [2].

Figure 3: Normalized pressure magnitude |pppx0, y0, z0q| {ρ0c0u0 (left) and phase =ppx0, y0, z0q

(right) at the focal plane. The pressure magnitude vanishes on-axis, and the three helicoids corre-

sponding to l “ 3 are seen in the phase, confirming vortex-beam behavior.

3 Fourier acoustics solution

Fourier acoustics allows for the efficient computation of the pressure field at intermediate

points, allowing for the study of the evolution of the vortex beam along its path to the focal

plane. [7] derives equations (1) and (2), and [8] is used to perform the calculations.

The setup summarized in tables (1) and (2) is used, except the transducer now operates

at a slightly lower frequency of 1 MHz, the phase plate is positioned at z1 “ 7.5 mm, and the

plane of observation is set to a closer distance of 12.5 mm. Figure (4) provides a schematic.
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Figure 4: Relative positions of the source, phase plate, and focal plane in the Fourier treatment.

This setup differs from that shown in figure (1): since the evolution of the vortex beam from the

transducer to a short distance beyond the phase plate is of interest, an observation plane closer

than the focal plane is considered, allowing for higher resolution.

The problem is again split into two. First, equation (1) calculates the pressure incident

on the phase plate, as shown in figure (5).

ppx1, y1, z1q “ ρ0c0F
´1

"

k

kz
ûTpkx, kyqeikzz

*

(1)

Second, a phase factor is included in the field at the phase plate to account for the vorticity.

The field is then propagated by inserting the solution from equation (1) into

ppx0, y0, z0q “ F´1
tF tppx1, y1, 7.5 mmqe3ilueiΦpφq

u. (2)

Figure (6) displays the pressure magnitude and phase immediately after leaving the phase

plate, and figure (7) shows the pressure magnitude in the y-z plane in that vicinity. Figure

(8) displays the magnitude and phase in the plane z “ 12.5 mm and demonstrates the

defining characteristics of vortex beams. Figure (9) shows the full journey of the vortex

beam, from transducer to a plane of observation past the phase plate.
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Figure 5: Magnitude of equation (1) normalized by ρ0c0u0. The on-axis magnitude grows due to

spherical focusing of transducer.

Figure 6: Pressure magnitude (left) and phase (right) shortly after exiting the phase plate. The

development of the l “ 3 phase pattern is seen.

Figure 7: Magnitude of the pressure field in the y-z plane after exiting the phase plate. Destruc-

tively interfere on-axis starts at z “ 7.5 mm and grows conically.
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Figure 8: Pressure magnitude (left) and phase (right) at z “ 1.25 cm. The vanishing on-axis

magnitude and l “ 3 vorticity are well-developed even at this early observation distance.

Figure 9: From z “ 0 to z “ 7.5 mm, the pressure evolves into an on-axis maximum; from z “ 7.5

to z “ 12.5 mm, the vorticity destructively evolves the on-axis amplitude into a null.

4 Fresnel limit

The motivation of exploring the Fresnel limit is twofold. First, to the authors’ knowledge,

an analytical solution for the vortex beam has not been discussed in the literature. The

investigation of the Fresnel limit has grown beyond the scope of the task at hand and is

being pursued independently. Second, an approximation of the results can drastically reduce

computation time in future work. To these ends, the Fresnel approximation, which gives the

pressure at point px, y, zq in the near field of a velocity source u0px0, y0q, is employed:
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ppx, y, zq »
´ikρ0c0

2π

eikz

z

8
ĳ

´8

u0px0, y0q exp
” ik

2z

`

px ´ x0q
2

` px ´ x0q
2
˘

ı

dx0 dy0. (3)

Note that a different notation is used in this section: the ‘0’ subscript now refers to the source.

Introducing polar coordinates, px, yq “ pσ cosφ, σ sinφq, px0, y0q “ pσ0 cosφ0, σ0 sinφ0q,

dx0 dy0 “ σ0 dσ0 dφ0, where σ “
a

x2 ` y2, σ2
0 “

a

x2
0 ` y20, φ “ arctan y{x, and φ0 “

arctan y0{x0, the argument of the exponential in equation (3) becomes px´x0q
2 `py´y0q

2 “

σ2 ` σ2
0 ´ 2σσ0 cospφ0 ` φq, upon which equation (3) becomes

ppσ, z, φq “
´ikρ0c0

2π

eikz

z
eikσ

2
{2z

ż 8

0

u0pσ0, ϕ0q exp

ˆ

ik

2z
σ2
0

˙

σ0

ż 2π

0

exp
”

´ikσσ0

z
cospφ0 ` φq

ı

dφ0 dσ0. (4)

The curvature of the transducer contributes a factor of exp
`

´ikσ2
0{2F

˘

, while the phase

plate contributes a factor of eiΦ, where Φ “ lφ for 0 ď φ ă 2π. Equation (4) becomes

ppσ, z, φq »
´ikρ0c0

2π

eikz

z
eikσ

2
{2zˆ

ˆ

ż 8

0

u0pσ0, ϕ0q exp
” ik

2

ˆ

1

z
´

1

F

˙

σ2
0

ı

σ0

ż 2π

0

exp
”

´ikσσ0

z
cospφ0 ` φq

ı

eilφ dφ0 dσ0. (5)

The angular integral in equation (5), upon changing variables φ0 ` φ ÞÑ φ1, becomes

e´ilφ

ż 2π

0
exp

”

´ikσσ0
z

cosφ1
ı

eilφ
1

dφ1. (6)

The limits of integration remain because cosine is periodic in 2π. Substituting kσσ0{2 ÞÑ η,

the integral in (6) renders itself as an integral representation of the Bessel function [11],

2π
eilπ{2Jlpηq “

ş2π

0
eilφ

1´iη cosφ1

dφ1, upon which (6) becomes
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2πe´ilφ

eilπ{2
Jlpkσσ0{zq. (7)

Substituting (7) into equation (5) results in a semi-analytical solution for any l:

ppσ, zq »
´ikρ0c0

eilπ{2

eikz

z
eikσ

2{2zˆ

ˆ

ż 8

0
u0pσ0, φ0q exp

” ik

2

ˆ

1

z
´

1

F

˙

σ2
0

ı

Jlpkσσ0{zqσ0 dσ0. (8)

For l “ 3, equation (8) becomes

ppσ, φ, zq » kρ0c0u0
eikz

z
eikσ

2{2ze´3iφ
ˆ

ˆ

ż a

0

exp
”ik

2

ˆ

1

z
´

1

F

˙

σ2
0

ı

J3pkσσ0{zqσ0 dσ0 (9)

Moving into the focal plane z “ F , the semi-analytical solution becomes analytical:

ppσ, φ, F q » ρ0c0u0
F

kσ2
eikF eikσ

2{2F e3iφ
„ ˆ

3π

2

kaσ

F
H0pkaσ{F q ´ 8

˙

J1pkaσ{F q`

`

ˆ

4kaσ

F
´

3πkaσ

2F
H1pkaσ{F q

˙

J0pkaσ{F q

ȷ

(10)

Figure (10) compares the exact Rayleigh solution to equation (10), as well as to the numerical

integration of equation (9) at z “ F . Figures (11) and (13) display the pressure field

computed using the Rayleigh and Fresnel solutions, respectively.
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Figure 10: Magnitudes (left) and phases (right) of the exact Rayleigh and Fresnel solutions along

the line y “ 0 in the focal plane for l “ 3. Equation (9) exactly matches (10), and both closely match

the Rayleigh result. The discrepancy near ˘4.75 mm is likely due to the Fresnel approximation’s

decreasing accuracy off-axis.

Figure 11: Magnitude (left) and phase (right) of the Rayleigh solutions in the focal plane for

l “ 3. The same parameters and normalization used to generate figure (3) were used here, except

that the phase plate imparts a continuous phase distribution.

Figure 12: The magnitude (left) and phase (right) of the Fresnel analytical solution in the focal

plane for l “ 3 are shown above. Comments regarding figure (10) apply.
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5 Finite Element Model

In sections (2), (3), and (4), the phase plate is assumed to be infinitesimally thin. In

practice, the phase plate’s varying thickness imparts phase to the incident pressure wave.

To investigate this vortex-generation mechanism in more detail, an FEM is constructed in

COMSOL according to the dimensions presented in [2].

The phase plate modeled in COMSOL simulation is shown in figures (13) and (14). Since

the 3D FEM computation is very time consuming, a lower ka corresponding to a drive

frequency of 20 kHz is used, and the transducer is not focused. The phase plate is discretized

into 12 equal-area sectors, each with a phase delay of lnπ
6

for pn´1qπ
6

ă φ ď nπ
6
, where

n “ 1, 2, . . . 12, and where l “ 3. To minimize reflection, the material properties ρ1 and c1

of the phase plate are impedance-matched, i.e., ρ1c1 “ ρ0c0.

Figure 13: Top view of phase plate (left); single partition (right)

Figure 14: 3D illustration of the setup

Figure (15) is the result of measuring the phase of the FEM a short distance beyond

the phase plate. The phase distribution near the axis reveals the l “ 3 vorticity pattern,

validating the vortex-generation mechanism proposed in [2].
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Figure 15: Phase distribution showing the l “ 3 vorticity

6 Applications

Currently, most vortex beam studies employ brute-force numerical methods, as presented

in section (2). These methods provide no insight on the field structure in the vicinity of

focal the plane and the dependence on distance from the source. As a result, the stability

of the null and the magnitude of the surrounding maximum are unknowns in experiments

and engineering applications, necessitating fine-tuning after these devices have been built.

For example, Terzi et al. attempt to demonstrate the utility of the l “ 3 vortex beam by

rotating a foam plastic ball floating on water, but the ball “escaped the focal region if the

distance between the transducer and the ball was changed even slightly” [2].

The results presented in this work—specifically the Fourier acoustics approach presented

in (3) and the analytical solution presented in (4)—address the deficiencies in the theory

that would eliminate the need of such fine-tuning. The stability can be improved by taking

the gradient of the three-dimensional field in the vicinity of the focal plane numerically in

(3) or analytically in 3, giving the local momentum field in that region. The pressure should

be chosen such that the magnitude of its gradient is proportional to the object’s mass, and

such that the null width is on the order of the object’s width.

Preliminary results shows that the null width and magnitude both depend on the vor-

ticity; this dependence will be analyzed in the near future to obtain a scaling law. To
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achieve precise manipulation of objects, a particular combination of null width and pressure

magnitude, and hence a particular vorticity, should be chosen.

Another application of vortex beams is in underwater communication. Since the phase of

vortex beams can be uniquely produced, they show promise in underwater communication

for their unique angular momentum “fingerprint.” As discussed in [9], information can be

encoded onto different orbital numbers l of the vortex beam to be received and decoded by

an array of transducers. The recovery of the data shows the feasibility of communication

using vortex beams at a reduced bit error rate. In this vein, Shi et al. [10] demonstrated a

higher spectral density in underwater acoustics communication by multiplexing the orbital

angular momentum of the vortex beam, achieving an order-of-magnitude enhancement of

data transmission at a single frequency for l “ ´4,´3, . . . 3, 4. The proposed scaling law

that relates vorticity to null width and pressure magnitude may inform transduction and

signal-processing aspects of such work.

Conclusion

Inspired by [2], the pressure field of a vortex beam generated by a single-element transducer

and phase plate was studied using the Rayleigh integral, Fourier acoustics, the Fresnel limit,

and an FEM model. Each mode of study offers unique insights into the formation and

structure of vortex beams. The analytical results constitute an extension of the existing

literature. To illustrate the value of these findings, a qualitative discussion of the applications

of vortex beams was included.
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