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Comments on the Fourier Acoustic Propagation Code

The posted Matlab code FourierAcousticProp.m uses the angular spectrum method to com-
pute the acoustic field radiated by a planar velocity source. All quantities in the code are made
dimensionless through normalization by a characteristic peak source velocity u0, source dimen-
sion a, and diffraction length (Rayleigh distance) z0 = 1

2
ka2. The dimensionless coordinates are

X = x/a, Y = y/a, and Z = z/z0; the wave numbers are K = ka and Ki = kia, where i
represents the x, y, or z component; and the field variables are P = p/ρ0c0u0 and Ui = ui/u0.
The dimensionless source velocity in the plane Z = 0 is designated here by U0(X, Y ), which is
taken to have a peak amplitude of unity, and which tends to zero for X2 + Y 2 somewhat greater
than unity. With the quantities normalized in this way, for ka � 1, and assuming no focusing
or beam steering, the acoustic field should have a magnitude of order one in the region defined
by −1 <∼ X <∼ 1, −1 <∼ Y <∼ 1, and 0 ≤ Z <∼ 1, and it should fall off outside this region. The
acoustic pressure and particle velocity components in any plane Z > 0 are computed as follows:
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may be computed using the relation Ji = 1
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RePU∗
i . All of the dimensionless field variables are

thus uniquely determined by U0(X, Y ) and ka.
To acquire a feel for the computations, use the “super-Gaussian” source function U0(R) =

exp(−Rn) with n = 30, where R = (X2+Y 2)1/2, let ka = 50, define the field size by |X|, |Y | ≤ 20,
use 512×512 points in the Fast Fourier Transform (FFT), and compute the sound pressure in the
X-Y plane at distance Zxy = 0.3, which is approximately where the last maximum occurs along
the axis of a circular piston. Any departures from circular symmetry that you observe (apart
from the rectangular discretization pattern) in either the angular spectrum or the pressure field
are due to the finite width of the angular spectrum being calculated, and the finite region of the
source plane being sampled. Use of the FFT causes both the angular spectrum and the acoustic
field variables to become periodic functions that are repeated like squares on a checkerboard.
If the magnitudes of the angular spectrum and acoustic field are not sufficiently small at the
edges of their respective regions, then overlap from neighboring regions tends to manifest itself
as ripples. For example, as you increase the exponent n in the super-Gaussian source function
(which approaches the step function for a circular piston as n→∞) you should observe increased
rippling in both k-space and physical space. This is caused by broadening of the angular spectrum
associated with sharpening of the edge of the source velocity distribution. Likewise, reducing
ka increases rippling in the acoustic field as the beam becomes broader. With these factors in
mind, you can explore the effects of changing the field width and spatial sampling interval on
the computed pressure field at various distances from the source.


