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In Prof. Hamilton’s Wave Phenomena class, we showed that the angular spectrum of a spherical
wave (i.e., its decomposition into plane waves) is
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As the field is axisymmetric about the z-axis, this is equivalent to
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We were asked: What is the interpretation of the evanescent spectrum where κ > k? I may not
have a totally satisfying answer, but I have some thoughts...

To gain intuition we examine the field along the positive z axis, where (2) reduces to
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We split this integral into the propagating and evanescent components:
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Both of these integrals are evaluated with u-substitution, yielding
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In the limit z → 0 the propagating components yield the finite value IP → ik. It seems
the propagating components are unable to reproduce the singularity at z = 0, and therefore the
evanescent components IE are needed.

This is similar to what Brekhovskikh wrote ([1], p. 231):
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It is impossible to obtain the field which would have the required singularity as R → 0
by superposition of ordinary plane waves only... We have waves propagating in the
horizontal plane (the xy plane) with a wavelength approaching zero and simultaneously
attenuating in the vertical direction with an attenuation coefficient approaching infinity.
At x = y = 0 the superposition of an infinite number of these waves gives an infinite
value for the field.
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