# Getting my mind around spherically converging waves 

## Chirag

February 22, 2023

This is a confusing topic, and these notes summarize different peoples' approaches to the topic.

## Dr. Blackstock's discussion ${ }^{1}$

Consider a bursting balloon enforcing the initial conditions

$$
\begin{align*}
& p(r, 0)=A\left[H(r)-H\left(r-r_{0}\right)\right]  \tag{1}\\
& u(r, 0)=0 . \tag{2}
\end{align*}
$$

For reasons not well explained, the volume velocity $q=S u$ must vanish at $r=0$ (because it's spherically symmetric sound?):

$$
\begin{equation*}
\lim _{r \rightarrow 0} q=\lim _{r \rightarrow 0} S u=\lim _{r \rightarrow 0} 4 \pi r^{2} u=0 \tag{3}
\end{equation*}
$$

The velocity potential $\phi$ will be used. ${ }^{2}$ Since the sound obeys the spherically symmetric wave equation, the velocity potential is of the form

$$
\phi=\frac{f\left(r-c_{0} t\right)}{r}+\frac{g\left(r+c_{0} t\right)}{r} .
$$

The pressure is therefore

$$
\begin{equation*}
p(r, t)=-\rho_{0} \phi_{t}=\rho_{0} c_{0} \frac{f^{\prime}\left(r-c_{0} t\right)-g^{\prime}\left(r+c_{0} t\right)}{r}, \tag{4}
\end{equation*}
$$

[^0]and the particle velocity is
\[

$$
\begin{equation*}
u(r, t)=\phi_{r}=-\frac{f\left(r-c_{0} t\right)+g\left(r+c_{0} t\right)}{r^{2}}+\frac{f^{\prime}\left(r-c_{0} t\right)+g^{\prime}\left(r+c_{0} t\right)}{r} \tag{5}
\end{equation*}
$$

\]

Applying the initial condition given by equation (2) on equation (5) gives

$$
\frac{f(r)+g(r)}{r^{2}}=\frac{f^{\prime}(r)+g^{\prime}(r)}{r}
$$

This equality is guaranteed if $g(r)=-f(r)$, because this implies that $g^{\prime}(r)=-f^{\prime}(r) .{ }^{3}$ Therefore, equation (4) becomes

$$
\begin{equation*}
p(r, t)=\rho_{0} c_{0} \frac{f^{\prime}\left(r-c_{0} t\right)+f^{\prime}\left(r+c_{0} t\right)}{r}, \tag{6}
\end{equation*}
$$

and equation (5) becomes

$$
u(r, t)=-\frac{f\left(r-c_{0} t\right)-f\left(r+c_{0} t\right)}{r^{2}}+\frac{f^{\prime}\left(r-c_{0} t\right)-f^{\prime}\left(r+c_{0} t\right)}{r} .
$$

The volume velocity is therefore

$$
\begin{align*}
q & =S u=4 \pi r^{2} u \\
& =-4 \pi\left[f\left(r-c_{0} t\right)-f\left(r+c_{0} t\right)\right]+4 \pi r\left[f^{\prime}\left(r-c_{0} t\right)-f^{\prime}\left(r+c_{0} t\right)\right] . \tag{7}
\end{align*}
$$

The condition given by equation (3) is applied to equation (7):

$$
\begin{align*}
\lim _{r \rightarrow 0} q & =-4 \pi\left[f\left(-c_{0} t\right)-f\left(c_{0} t\right)\right]=0 \\
\Longrightarrow f\left(-c_{0} t\right) & =f\left(c_{0} t\right) . \tag{8}
\end{align*}
$$

Taking the derivative of equation (8) gives

$$
\begin{equation*}
-f^{\prime}\left(-c_{0} t\right)=f^{\prime}\left(c_{0} t\right), \tag{9}
\end{equation*}
$$

i.e., that $f^{\prime}$ is odd.

Meanwhile, the initial condition given by equation (1) is applied to equation (6):

$$
A\left[H(r)-H\left(r-r_{0}\right)\right]=2 \rho_{0} c_{0} \frac{f^{\prime}(r)}{r}
$$

[^1]Solving the above for $f^{\prime}(r)$ gives

$$
\begin{equation*}
f^{\prime}(r)=\frac{r A\left[H(r)-H\left(r-r_{0}\right)\right]}{2 \rho_{0} c_{0}} \tag{10}
\end{equation*}
$$

Enforcing equation (9) (the oddness of $f^{\prime}$ ) on equation (10) requires that $f^{\prime}$ is defined for $-r$ as well as $+r$. This can be achieved using the rectangle function: ${ }^{4}$

$$
f^{\prime}(r)=\frac{r A}{2 \rho_{0} c_{0}} \operatorname{rect}\left(\frac{r}{2 r_{0}}\right)
$$

Therefore,

$$
\begin{equation*}
f^{\prime}\left(r \pm c_{0} t\right)=\frac{A}{2 \rho_{0} c_{0}}\left(r \pm c_{0} t\right) \operatorname{rect}\left(\frac{r \pm c_{0} t}{2 r_{0}}\right) \tag{11}
\end{equation*}
$$

Substituting equation (11) into equation (6) gives the solution:

$$
p(r, t)=\frac{A}{2 r}\left[\left(r-c_{0} t\right) \operatorname{rect}\left(\frac{r-c_{0} t}{2 r_{0}}\right)+\left(r+c_{0} t\right) \operatorname{rect}\left(\frac{r+c_{0} t}{2 r_{0}}\right)\right]
$$

## Dr. Hamilton's discussion ${ }^{5}$

Consider a sphere of radius $r_{0}$. At $r=r_{0}$, the incident pressure wave is given by $p_{\text {in }}(t)$. The pressure solution is therefore of the form

$$
\begin{equation*}
p=\frac{r_{0}}{r} p_{\text {in }}\left(t+r / c_{0}\right)+\frac{F\left(t-r / c_{0}\right)}{r}, \tag{12}
\end{equation*}
$$

where $F$ corresponds to the wave emerging through the focus. The goal of what follows is to determine $F$ in terms of $p_{\text {in }}$. First, apply the momentum equation for a spherical wave, $\rho_{0} \dot{u}=-p_{r}$, to equation (12):

$$
\rho_{0} \frac{\partial u}{\partial t}=\frac{F^{\prime}\left(t-r / c_{0}\right)-r_{0} p_{\text {in }}^{\prime}\left(t+r / c_{0}\right)}{c_{0} r}+\frac{F\left(t-r / c_{0}\right)+r_{0} p_{\text {in }}\left(t+r / c_{0}\right)}{r^{2}}
$$

[^2]Solving the above for $u$ by integration over time gives

$$
\begin{align*}
u & =-\frac{1}{\rho_{0}} \int \frac{\partial p}{\partial t} d t \\
& =\frac{F\left(t-r / c_{0}\right)-r_{0} p_{\text {in }}\left(t+r / c_{0}\right)}{\rho_{0} c_{0} r}+\frac{\tilde{F}\left(t-r / c_{0}\right)+r_{0} \tilde{p}_{\text {in }}\left(t+r / c_{0}\right)}{\rho_{0} r^{2}} \tag{13}
\end{align*}
$$

where $\tilde{p}$ is the antiderivative of $p$, and $\tilde{F}$ is the antiderivative of $F$. When the boundary condition $\lim _{r \rightarrow 0} q=\lim _{r \rightarrow 0} 4 \pi r^{2} u=0$ is applied to equation (13), the first term of equation (13) vanishes, and the second term gives

$$
\frac{4 \pi}{\rho_{0}}\left[\tilde{F}(t)+r_{0} \tilde{p}_{\text {in }}(t)\right]=0
$$

Solving the above for $\tilde{F}(t)$ gives

$$
\tilde{F}(t)=-r_{0} \tilde{p}_{\text {in }}(t) \quad \Longrightarrow \quad F(t)=-r_{0} p_{\text {in }}(t)
$$

Substituting $F(t)=-r_{0} p_{\text {in }}(t)$ into equation (12) gives the solution

$$
\begin{equation*}
p=\frac{r_{0}}{r} p_{\text {in }}\left(t+r / c_{0}\right)-\frac{r_{0}}{r} p_{\text {in }}\left(t-r / c_{0}\right), \tag{14}
\end{equation*}
$$

The first term corresponds to the incoming wave, and the second term corresponds to the outgoing wave.

What happens at $r=0$ (the focus)? The limit of equation (14) is taken in that limit:

$$
\begin{aligned}
\lim _{r \rightarrow 0} p & =\lim _{r \rightarrow 0} \frac{r_{0}}{r}\left[p_{\text {in }}\left(t+r / c_{0}\right)-p_{\text {in }}\left(t-r / c_{0}\right)\right] \\
& =\lim _{r \rightarrow 0} \frac{r_{0}}{r}\left[p_{\text {in }}(t)+\frac{r}{c_{0}} p_{\text {in }}^{\prime}(t)-p_{\text {in }}(t)+\frac{r}{c_{0}} p_{\text {in }}^{\prime}(t)\right] \\
& =\frac{2 r_{0}}{c_{0}} p_{\text {in }}^{\prime}(t)
\end{aligned}
$$

In the second equality above, the function is Taylor expanded to first order, and the higher-order terms are dropped. The conclusion is that the pressure at the center of the sphere is proportional to the time derivative of the incident pressure.

$$
p(r=0, t)=\frac{2 r_{0}}{c_{0}} p_{\text {in }}^{\prime}(t)
$$


[^0]:    ${ }^{1}$ pages 121-124 "Fundamentals of Physical Acoustics"
    ${ }^{2}$ Recall that $p=-\rho_{0} \phi_{t}$ and $u=\phi_{r}$

[^1]:    ${ }^{3}$ The converse is not necessarily true.

[^2]:    ${ }^{4} \operatorname{rect}\left(\frac{x-x_{0}}{w}\right)=H\left(x-x_{0}+w / 2\right)-H\left(x-x_{0}-w / 2\right)$
    ${ }^{5}$ from Acoustics I lecture notes. Dr. Hamilton's discussion is a bit more general than Dr. Blackstock's.

