
Review for the nonlinear acoustics final

Chirag∗

September 20, 2023

These problems, based
on Dr. Hamilton’s
lectures, address the
major topics of the
latter half of the
course, corresponding
to HW6-HW8. Good
luck on the exam!

1 Rankine-Hugoniot relations
(a) Name the quantity that is conserved when f and g, as defined below,

are substituted into equation (1.1).

Bf

Bt
+

Bg

Bx
= 0 . (1.1)

f g
(i) ρ ρu

(ii) ρu ρu2 + P
(iii) 1

2ρu
2 + ρe 1

2ρu
3 + ρue+ Pu

(b) Write equation (1.1) in integral form by integrating from x1 to x2.
Write the result such that the quantity g(x1, t)´ g(x2, t) appears on
one side of the equation. Call this quantity I.

∗chiragokani@gmail.com

1



(c) Let a discontinuity exist at xsh(t) in the result from part (b). Split
the integral I from part (b) into I1 + I2, to account for the disconti-
nuity. Use the notation x1 ă x´

sh ă x+sh ă x2. Hint: the upper limit
of I1 should be x´

sh, and the lower limit of I2 should be x+sh, where
x˘

sh = xsh ˘ ϵ, ϵ Ñ 0.

(d) Evaluate the integrals I1 and I2. Hint: Note that for an arbitrary
function q(x, t),

d

dt

ż x˘

xi

q(x, t)dx = q(x˘, t)
dx˘

dt
´ q(xi, t)

dxi
dt

+

ż x˘

xi

Bq

Bt
dx.

Note that dx1(t)/dt = dx2(t)/dt = 0. Also, denote dx´
sh/dt = Ush.

(e) Take the limit of I1, as found in the previous part, as x1 Ñ x´
sh.

Similarly, take the limit of I2 as x2 Ñ x+sh. Note that the integral
vanishes in both cases.

(f) Use the above result, as well as the result of part (b), to show that
as x1 Ñ x´

sh and x2 Ñ x+sh,

g(x´
sh, t) ´ g(x+sh, t) = Ush[f(x

´
sh, t) ´ f(x+sh, t)] (1.2)

(g) Rewrite equation (1.2) by letting the subscript a correspond to “ahead
of the shock,” x+sh, and by letting the subscript b correspond to “be-
hind the shock,” x´

sh.

(h) Write the above result using the jump notation, [q] = qb ´ qa.

(i) Define v = u ´ Ush and use the table from part (a) to derive the
so-called Rankine-Hugoniot relations. Hint: for the conservation of
momentum and energy, some rearrangement is required. Just see
your notes.

(j) What did we find in class to be the order of the entropy jump across
the shock, for an arbitrary fluid?

(k) What did we find in class to be the order of the reflection from the
shock front?

(l) What do the previous two parts imply about the shock at quadratic
order?
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2 Weak shock speed
(a) Denoting v = u´Ush and Q = ρu, use the Rankine-Hugoniot relation

[ρv] = 0 to show that

Ush =
[Q]

[ρ]
. (2.1)

(b) Taylor expand [Q] in [ρ] to O(ϵ3) and combine with equation (2.1)
to show that

Ush = Q1
a +

1

2
Q2

a[ρ] +O(ϵ2) . (2.2)

(c) Noting that [Q1] = Q2
a[ρ]+O(ϵ2) (the first-order Taylor expansion of

[Q1] in ρ), substitute Q2
a into equation (2.2) to show that

Ush = Q1
a +

1

2
[Q1] +O(ϵ2) . (2.3)

Then write [Q1] = Q1
b ´ Q1

a to write equation (2.3) as

Ush =
1

2
(Q1

a +Q1
b) +O(ϵ2) . (2.4)

(d) Note that

Q1 =
d(ρu)

dρ
= u+ ρ

du

dρ

= u+ c

= u+ c0 +
B

2A
u+O(ϵ2)

= c0 + βu+O(ϵ2) , (2.5)

where the simple-wave relation du = c
ρdρ has been used. Combine

equation (2.5) with equation (2.4) to show that

Ush = c0 +
β

2
(ua + ub) +O(ϵ2) . (2.6)

Energy dissipation at a shock front was very involved an is not included
in this review. See class notes for the derivation leading to dE/dt, which
is cubic in the pressure jump. dT/dt is also cubic in the pressure jump.
See also the applications to HIFU discussed in class.
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3 Landau’s equal-area rule
(a) Note that the area under a shock is given by

A =

ż ub

ua

(x ´ xsh)du . (3.1)

Write dA/dt using the rule

d

dt

ż ub

ua

q(u, t)du = q(ub, t)
dub
dt

´ q(ua, t)
dua
dt

+

ż ub

ua

Bq

Bt
du.

Hint: let q above = x ´ xsh.

(b) Noting that x = xsh at u = ua and u = ub, show that

dA

dt
=

ż ub

ua

[
dx

dt
´

dxsh

dt

]
du . (3.2)

(c) Identify dx/dt in equation (3.2) to be the finite amplitude propaga-
tion speed, c0 + βu + O(ϵ2), and identify dxsh/dt to be Ush = c0 +
β
2 (ua+ub)+O(ϵ2), by equation (2.6). Perform the integral in equation
(3.2) over u to show that dA/dt = 0, i.e., A = constant = A+´A´.

4 Blackstock’s weak-shock method
(a) The retarded shock time is τsh = tsh ´ x/c0. Calculate dτsh/dx by

define the shock slowness to be 1/Ush = dtsh/dx = [c0+
β
2 (ua+ub)]

´1.
Answer:

dτsh

dx
= ´

β

2ρ0c30
(pa + pb) +O(ϵ2) (4.1)

(b) From where are pa and pb obtained?

(c) N-wave example: Use the Blackstock weak shock method to find
psh(x) for the boundary condition

f(t) =

#

´p0t/T0, |t| ă T0

0, |t| ą T
, (4.2)

which is prescribed at x = 0, ϕ = τ .
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´p0

p0

τ
T0 T

´T0´T

5 Blackstock’s bridging function
(a) From the development of the Fubini solution, which expands the

pressure as a Fourier sine series P (σ, θ) =
ř8

n=1Bn(σ) sinnθ, where
σ = x/x̄ and θ = ωτ , it was found that the expansion coefficients
Bn are given by the sum B

(1)
n +B

(2)
n , where

B(1)
n = ´

2

nπ
cos(nθ) sin(Φ)

∣∣∣∣θ,Φ=π

θ,Φ=0

= 0 (5.1)

B(2)
n =

2

nπ

ż Φ=π

Φ=0

cosnθ cosΦdΦ =
2

nσ
Jn(nσ) (5.2)

where Φ = θ + σ sinΦ. For σ ă 1, why are the limits on θ and Φ
above equal?

(b) For σ ą 1, what is Φ when θ = π? What are the two possibilities for
Φ at θ = 0? Noting that Psh = Pb, what is the correct choice for Φ?

(c) Given how Φ and θ have different limits at θ = 0, how do equa-
tions (5.1) and (5.2) change for σ ą 1? (Qualitative answer is suffi-
cient...the math is a bit confusing)

6 Nonlinearity in multiple dimensions
(a) 1D spreading is modeled by adding a term mp/r to the LHS of the

Burgers equation with no absorption, i.e., δ = 0:

Bp

Br
+

m

r
p = ˘

βp

ρ0c30

Bp

Bτ
. (6.1)

where τ is now t¯(r´r0)/c0. What is m for 1D spherical spreading?
What is m for 1D cylindrical spreading? What is some restrictions
on this formulation?
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(b) Introduce

q =

(
r

r0

)m

p

and calculate Bp/Br and Bp/Bτ in terms of q.

(c) Write equation (6.1) in terms of q. Answer:

Bq

Br
= ˘

(
r0
r

)m
βq

ρ0c30

Bq

Bτ
(6.2)

(d) With the intention of getting rid of the factor of (r0/r)m altogether
from equation (6.2), choose z(r) such that

Bq

Br
=

Bq

Bz

dz

dr
= ˘

(
r0
r

)m
Bq

Bz
.

Integrate to find z for m = 1 and m = 1/2.

(e) Write equation (6.1) in terms of the stretched coordinates q and z.

7 Radiation force
(a) What is the distinction between Eulerian and Lagrangian coordi-

nates? Why does the distinction dissolve in linear theory?

(b) Let a be the position of a particle at rest, ξ be the displacement of
the particle from a, and x be the position of the displaced particle:

O

a x(a, t) = a + ξ (a, t)
= position of displaced particle

ξ = displacement of particle

Then, the transformations between a Lagrangian quantity qL(a, t)
(can be a scalar, vector, or tensor) and Eulerian quantity qE(x, t)
are

qL(a, t) = qE(a, t) + ξ(a, t) ¨ ∇aqE(a, t) (7.1)
qE(x, t) = qL(x, t) ´ ξ(x, t) ¨ ∇xqL(x, t) . (7.2)
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Why can the coordinates in which the gradients in the above equa-
tions are evaluated be neglected?

(c) Resolve Westervelt’s paradox, which says that for Ẋ(t) = u0 sinωt at
x = X(t), uE = u0 sin(ωt´kx) and xuEy = ´xu2y/c0 = ´u20/2c0. Do
so by calculating xuLy in Lagrangian coordinates. Hint: use equation
(7.1).

(d) Calculate the mean excess pressure in Eulerian coordinates. Hint:
Start with the linearized momentum equation

ρ0
Bu

Bt
+∇p = ´∇L (7.3)

where L = 1
2ρ0u

2 ´ p2/2ρ0c
2
0 is the Lagrangian (leave everything in

terms of L). Then let u = ∇ϕ, i.e., irrotational, and integrate over
volume. Call the constant of integration g(t) on the right-hand side.
Finally take the time average and call xg(t)y ” C. Answer:

xpEy = ´ xLy + C (7.4)

(e) Calculate the mean excess pressure in Lagrangian coordinates by
using equation (7.1). Hint: After using equation (7.1), take the
time average, and use the momentum equation to write xξ ¨ ∇py =
´ρ0 xξ ¨ Bu/Bty. Further note that one can write B2ξ/Bt2 as 2Bξ/Bt ¨

Bξ/Bt+ 2ξ ¨ B2ξ/Bt2. Answer:

xpLy = xpEy + ρ0 xu2y (7.5)

(f) Define V = p2/2ρ0c
2
0, K = ρ0u

2/2. Then the energy is E = K+V and
the Lagrangian is L = K´V . By equation (7.5), xpLy = xpEy+2 xKy.
Combine this result and the new notation with equation (7.4) to find
xpLy.

(g) Show that in the linear limit, the Eulerian and Lagrangian excess
pressures are equal.

(h) Show that the Lagrangian radiation pressure xpLy on a surface nor-
mal to and in contact with the fluid motion is constant. What is
remarkable about this result? Hint: Take the time average of New-
ton’s second law, which in Lagrangian coordinates reads ρ0B

2ξ/Bt2 =
´BpL/Ba.
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(i) Calculate xpEy and xpLy in a standing wave, to accuracy of a constant
of integration C. The standing wave is given by p = p0 cos kx sinωt,
or equivalently u = p0

ρ0c0
sin kx cosωt. Hint: Recall from Acoustics I

that V = p2/2ρ0c
2
0 and K = ρ0u

2/2 and write the answer in terms
of E = V +K and L = K ´ V .

(j) Determine the constant of integration C by invoking the conservation
of mass. Specifically, require that

ż x+λ

x

xρ1
Ey dx = 0, at O(ϵ2) ,

where1 ρ1 = (p ´ V B/A)/c20. Answer:

C =
B

2A

p20
4ρ0c20

(k) Given that the radiation force on an object of volume V is F rad =
´ xV∇py, calculate the radiation force exerted on a ping-pong ball
of radius R by a standing pressure wave p(x, t) = p0 cos kx sinωt
in a closed tube. Assume that the ball is perfectly rigid and that
kR ! 1. Hint: Reduce the problem to 1D, i.e., F rad = ´ xV Bp/Bxy

and assume that the ping-pong ball has sufficient inertia such that
Eulerian radiation pressure xpEy found in the previous problem can
be used. Also note that since the ball is rigid, its volume is constant.
All these considerations result in the radiation force being given by

Frad = ´
4πR3

3

d xpEy

dx

(l) Define xPy to be the time-averaged momentum density, given by
xmomentum/volumey. Show that

xPy =
xEy

c0
for f(x ´ c0t)

and
xPy = ´

xEy

c0
for f(x+ c0t).

1See equation (3-39) of [2].
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Hint: write momentum/volume as ρ1u, and use linear relations ρ1 =
p/c20 and u = p/ρ0c0. Then note that E = p2/ρ0c

2
0.

(m) In class, the momentum flux (time-averaged momentum per unit
time per unit area) was found to be given by J = c0 xPy = xEy,
where xPy is the time-averaged momentum density discussed in the
previous part. At a 2-fluid interface, with the first fluid having pa-
rameters ρ1 and c1 and the second fluid having parameters ρ2 and
c2, the net momentum flux J into the interface was identified to be
the time-averaged Lagrangian pressure xpLy. Use these relations to
find xpLy in terms of the fluid parameters, the incident time averaged
energy density xE1y, and the pressure reflection and transmission co-
efficients R and T . Hint: Start with xpLy = c0 xPi ´ Pr ´ Pty.

(n) Given that Frad 9 xPy, is it possible to have acoustic radiation force
in the linear limit?

8 Streaming
I haven't typed up solutions to the streaming problems.

(a) It was shown that the “full momentum equation” i.e., equation (3-2)
of [2], can be written as

B(ρu)

Bt
´ F 1 +∇P = µ∇2u+ (µB + µ/3)∇(∇ ¨ u) (8.1)

where ´ F 1 = ρ(u ¨ ∇)u+ u(∇ ¨ ρu) (8.2)

Take the time-average of equations (8.1) and (8.2) and denote F ”

xF 1y to show that

F = ∇ xP y ´ µ∇2 xuy (8.3)
F = ´ xρ(u ¨ ∇)u+ u∇ ¨ (ρu)y (8.4)

What assumption has been made about the fluid in equation (8.3)?
What is another name for this assumption? Why does the xB(ρu)/Bty =
0?

(b) Drop the x y notation denoting “time average” and let the time av-
eraging be implied on all wave quantities. Letting P = P0 + p1 + p2,
ρ = ρ0 + ρ1 + ρ2, and u = u1 + u2, the subscripts refer to the order
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of the term, show that the O(ϵ2) version of equations (8.3) and (8.4)
are

F 2 = ∇p2 ´ µ∇2 xu2y (8.5)
F 2 = ´ xρ0(u1 ¨ ∇)u1 + u1∇ ¨ (ρu1)y (8.6)

(c) Let p1 = p0e
´αx sin(ωt ´ kx). Calculate F 2 using equation (8.6).

Hint: use the linear relation p1 » ρ0c0u1.

(d) Take the limit of the above result as take the limit as α ! k. Answer:
F2l = αp20/ρ0c

2
0. What does this result say about the nature of

acoustic streaming?

(e) In class, it was shown that in the presence of shocks,

F2f =
2βkPsh

3πρ20c
4
0

,

the maximum value of which is 2βkp30/3πρ
2
0c

4
0. Show that the ratio

of F2f to F2l is 2Γ/3π, where Γ = βϵk/α (the Gol’berg number).
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