Fourier acoustics* ${ }^{*}$

Chirag Gokani

September 28, 2022

Mathematical preliminary

Recall the 2D Fourier transform inverse pair:

$$
\begin{gather*}
\hat{f}\left(k_{x}, k_{y}\right)=\mathcal{F}[f(x, y)]=\iint_{-\infty}^{\infty} f(x, y) e^{-i\left(k_{x} x+k_{y} y\right)} d x d y \tag{1}\\
f(x, y)=\mathcal{F}^{-1}\left[f\left(k_{x}, k_{y}\right)\right]=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{\infty} f\left(k_{x}, k_{y}\right) e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y} \tag{2}
\end{gather*}
$$

Applying the inverse 2D Fourier transform to the $n^{\text {th }}$ derivative of $f(x, y)$ with respect to x gives

$$
\begin{equation*}
\frac{\partial^{n}}{\partial x^{n}} f(x, y)=\frac{\partial^{n}}{\partial x^{n}} \mathcal{F}^{-1}\left[f\left(k_{x}, k_{y}\right)\right]=\mathcal{F}^{-1}\left[\left(i k_{x}\right)^{n} \hat{f}\left(k_{x}, k_{y}\right)\right] \tag{3}
\end{equation*}
$$

[^0]Taking the Fourier transform of both left- and right-hand-sides of equation (3) results in

$$
\mathcal{F}\left[\frac{\partial^{n} f(x, y)}{\partial x^{n}}\right]=\mathcal{F} \mathcal{F}^{-1}\left[\left(i k_{x}\right)^{n} \hat{f}\left(k_{x}, k_{y}\right)\right] .
$$

Since \mathcal{F} and \mathcal{F}^{-1} are inverses, the above equation results two identities (the second identity for derivatives with respect to y follows similarly):

$$
\begin{align*}
& \mathcal{F}\left[\frac{\partial^{n} f(x, y)}{\partial x^{n}}\right]=\left(i k_{x}\right)^{n} \hat{f}\left(k_{x}, k_{y}\right) \tag{ID1}\\
& \mathcal{F}\left[\frac{\partial^{n} f(x, y)}{\partial y^{n}}\right]=\left(i k_{y}\right)^{n} \hat{f}\left(k_{x}, k_{y}\right) \tag{ID2}
\end{align*}
$$

Pressure source

The Helmholtz equation is the wave equation for time-harmonic solutions. In Cartesian coordinates,

$$
0=\nabla^{2} p+k^{2} p=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right)
$$

Taking the 2D spatial Fourier transform of the Helmholtz equation and applying (ID 1) and (ID 2) gives

$$
\begin{align*}
0 & =\mathcal{F}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right] \\
& =\left(-k_{x}^{2}-k_{y}^{2}-\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \hat{p}\left(k_{x}, k_{y}, z\right) \tag{4}
\end{align*}
$$

But the orthogonality of the coordinate system relates the wavenumbers by $k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$. Thus equation (4) becomes an ordinary
differential equation,

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}+k_{z}^{2}\right) \hat{p}\left(k_{x}, k_{y}, z\right)=0 \tag{5}
\end{equation*}
$$

whose solution for $+z$-propagation is

$$
\begin{equation*}
\hat{p}\left(k_{x}, k_{y}, z\right)=\hat{p}_{0}\left(k_{x}, k_{y}\right) e^{i k_{z} z} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{p}_{0}\left(k_{x}, k_{y}\right) & =\hat{p}_{0}\left(k_{x}, k_{y}, z=0\right) \\
& =\mathcal{F}[p(x, y, z=0)]
\end{aligned}
$$

is the source condition. The solution to the Helmholtz equation is found by applying equation (2) to equation (6):

$$
\begin{equation*}
p(x, y, z)=\mathcal{F}^{-1}\left\{\hat{p}_{0}\left(k_{x}, k_{y}\right) e^{i k_{z} z}\right\} \tag{7}
\end{equation*}
$$

Equation (7) is equivalent to the second Rayleigh integral.

Velocity source

For velocity sources, start by recalling the linear momentum equation for time-harmonic solutions,

$$
\boldsymbol{u}=\frac{1}{i k \rho_{0} c_{0}} \boldsymbol{\nabla} p
$$

and apply the Fourier transform pair, equations (1) and (2),

$$
\begin{align*}
\boldsymbol{u} & =\frac{1}{i k \rho_{0} c_{0}} \boldsymbol{\nabla}\left\{\mathcal{F}^{-1}[\mathcal{F} p(x, y, z)]\right\} \\
& =\frac{1}{i k \rho_{0} c_{0}} \mathcal{F}^{-1}\{\mathcal{F}[\boldsymbol{\nabla} p(x, y, z)]\} \tag{8}
\end{align*}
$$

Note from (ID 1) and (ID 2) for $n=1$ that

$$
\begin{aligned}
& \mathcal{F}\left[\frac{\partial p}{\partial x}\right]=i k_{x} \hat{p} \\
& \mathcal{F}\left[\frac{\partial p}{\partial y}\right]=i k_{y} \hat{p}
\end{aligned}
$$

Also note that $\frac{\partial}{\partial z} \mathcal{F}(p)=i k_{z} \hat{p}$ from equation (5). Then equation (8) becomes

$$
\begin{equation*}
\boldsymbol{u}=\frac{1}{\rho_{0} c_{0}} \mathcal{F}^{-1}\left\{\frac{\boldsymbol{k}}{k} \hat{p}\right\} \tag{9}
\end{equation*}
$$

The z-component of equation (9) becomes

$$
\begin{equation*}
u_{z}(x, y, z=0)=u_{0}(x, y)=\frac{1}{\rho_{0} c_{0}} \mathcal{F}^{-1}\left\{\frac{k_{z}}{k} \hat{p}\left(k_{x}, k_{y}\right)\right\} \tag{10}
\end{equation*}
$$

Equation (10) for p_{0} reads

$$
\begin{equation*}
\hat{p}_{0}\left(k_{x}, k_{y}\right)=\rho_{0} c_{0} \frac{k}{k_{z}} \hat{u}_{0}\left(k_{x}, k_{y}\right) \tag{11}
\end{equation*}
$$

Substituting equation (11) into equation (7) gives

$$
\begin{align*}
p(x, y, z) & =\rho_{0} c_{0} \mathcal{F}^{-1}\left[\frac{k}{k_{z}} \hat{u}_{0}\left(k_{x}, k_{y}\right) e^{i k_{z} z}\right] \tag{12}\\
& =\rho_{0} c_{0} \mathcal{F}^{-1}\left\{\mathcal{F}\left[u_{0}(x, y)\right] \frac{k}{k_{z}} e^{i k_{z} z}\right\} \tag{13}
\end{align*}
$$

Equation (13) is equivalent to first Rayleigh integral.

[^0]: *based on Dr. Mark F. Hamilton's Acoustics II lecture on the topic, but in the $e^{i(k x-\omega t)}$ time convention
 ${ }^{\dagger}$ to sort out my own understanding of the topic

