Sound in a general axisymmetric ($m=0$) spherical enclosure

Let the radius of the spherical source be a. At the boundary of the sphere, $r=a$, there is a pressure source given by

$$
\begin{equation*}
p(a, \theta)=p_{0} f(\theta) e^{j \omega t} \tag{1}
\end{equation*}
$$

Equation (1) can be written as an expansion of Legendre polynomials, where M_{n} is the expansion coefficient:

$$
\begin{equation*}
p(a, \theta, t)=p_{0} \sum_{n=0}^{\infty} M_{n} P_{n}(\cos \theta) e^{j \omega t} \tag{2}
\end{equation*}
$$

Meanwhile, the pressure inside the sphere is written in terms of Legendre polynomials and spherical Bessel functions:

$$
\begin{equation*}
p(r, \theta, t)=\sum_{n=0}^{\infty} A_{n} P_{n}(\cos \theta) j_{n}(k r) e^{j \omega t} \tag{3}
\end{equation*}
$$

Matching equations (2) and (3) at $r=a$, and canceling the time-dependence,

$$
\begin{equation*}
p_{0} \sum_{n=0}^{\infty} M_{n} P_{n}(\cos \theta)=\sum_{n=0}^{\infty} A_{n} P_{n}(\cos \theta) j_{n}(k a) \tag{4}
\end{equation*}
$$

where, by the orthogonality of Legendre polynomials,

$$
\begin{equation*}
M_{n}=\frac{2 n+1}{2} \int_{0}^{\infty} f(\theta) P_{n}(\cos \theta) \sin \theta \mathrm{d} \theta \tag{5}
\end{equation*}
$$

Equation (4) is solved for A_{n} :

$$
\begin{equation*}
A_{n}=\frac{p_{0} M_{n}}{j_{n}(k a)} \tag{6}
\end{equation*}
$$

Substituting equation (6) into equation (3) results in the solution

$$
\begin{equation*}
p(r, \theta, t)=p_{0} \sum_{n=0}^{\infty} M_{n} P_{n}(\cos \theta) \frac{j_{n}(k r)}{j_{n}(k a)} e^{j \omega t} \tag{7}
\end{equation*}
$$

where M_{n} is given by equation (5).
Comment from MFH: "This is like the 1-D problem in Acoustics I for a source at the end of a closed tube. So like the tube problem, your resonances should be the frequencies for which $j_{n}(k a)=0$ in the denominator of Eq. (7).... And if you used a velocity source, it should be $j_{n}^{\prime}(k a)=0$."

