Notating $R \equiv\left|\boldsymbol{r}-\boldsymbol{r}_{0}\right|$, show that $\left.\right|^{1}$

$$
g_{\omega}=\frac{1}{4 \pi R} e^{i k R}
$$

solves

$$
\begin{equation*}
\nabla^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)+k^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=-\delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \tag{1}
\end{equation*}
$$

First, integrate both sides of equation (1) over a sphere of small radius a :

$$
\begin{equation*}
\iiint \nabla^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right) \mathrm{d} V+\iiint k^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right) \mathrm{d} V=-\iiint \delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \mathrm{d} V \tag{2}
\end{equation*}
$$

Note that the right-hand-side of equation (2) is just -1 , by definition of the delta function. Meanwhile, the first integral on the left-hand-side of equation (2) can be written as

$$
\begin{aligned}
\iiint_{V} \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} g_{\omega} \mathrm{d} V & =\frac{1}{4 \pi} \iiint_{\boldsymbol{\nabla}} \cdot \hat{R}\left(-\frac{1}{R^{2}}+\frac{i k}{R}\right) e^{i k R} d V \\
& =\oiint\left(-\frac{1}{R^{2}}+\frac{i k}{R}\right) e^{i k R} d S \\
& =\frac{4 \pi a^{2}}{4 \pi}\left(-\frac{1}{a^{2}}+\frac{i k}{a}\right) e^{i k a} \\
& =(-1+i k a) e^{i k a} \\
& =(-1+i k a)\left(1+i k a-\frac{(k a)^{2}}{2!}-i \frac{(k a)^{3}}{3!}+\frac{(k a)^{4}}{4!}+\ldots\right) \\
& \rightarrow-1 \text { as } a \rightarrow 0
\end{aligned}
$$

The second integral on the left-hand-side of equation (2) is evaluated in spherical coordinates ${ }^{2}$, and the resulting radial integral is evaluated by parts:

$$
\begin{aligned}
\frac{k^{2}}{4 \pi} \iiint_{V} \frac{e^{i k R}}{R} \mathrm{~d} V & =\frac{k^{2}}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} R e^{i k R} \sin \theta \mathrm{~d} R \mathrm{~d} \theta \mathrm{~d} \phi \\
& =k^{2} \int_{0}^{a} R e^{i k R} d R \\
& =-i k a e^{i k a}+e^{i k a}-1 \\
& =-i k a e^{i k a}+1+i k a-\frac{(k a)^{2}}{2!}-i \frac{(k a)^{3}}{3!}+\frac{(k a)^{4}}{4!} \cdots-1 \\
& \rightarrow 0 \text { as } a \rightarrow 0
\end{aligned}
$$

The left-hand-side and right-hand-side of equation (2) both equal -1 , showing that g_{ω} solves equation (11).

[^0]
[^0]: ${ }^{1}$ See Morse \& Ingard, section 7.1
 ${ }^{2}$ Recall that the Jacobian in spherical coordinates is $R^{2} \sin \theta$.

