Use Green's functions to solve the inhomogenous Helmholtz equation

$$
\begin{equation*}
\nabla^{2} p_{\omega}+k^{2} p_{\omega}=-f_{\omega}(\boldsymbol{r}) . \tag{1}
\end{equation*}
$$

Since Green's functions $g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)$ are solutions to

$$
\begin{equation*}
\nabla^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)+k^{2} g_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=-\delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \tag{2}
\end{equation*}
$$

so are $G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)=g_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)+\chi(\boldsymbol{r})$, where $\chi(\boldsymbol{r})$ satisfies the homogeneous Helmholtz equation $\nabla^{2} \chi+k^{2} \chi=0$. Equation (2) for $G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)$ reads

$$
\begin{equation*}
\nabla^{2} G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)+k^{2} G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=-\delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \tag{3}
\end{equation*}
$$

Equation (3) is multiplied by p_{ω} and subtracted from the product of G_{ω} and equation (1):

$$
\begin{equation*}
G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right) \nabla^{2} p_{\omega}-p_{\omega} \nabla^{2} G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=-f_{\omega}(\boldsymbol{r}) G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)+p_{\omega} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \tag{4}
\end{equation*}
$$

Now switching the location of the source from \boldsymbol{r}_{0} to $\boldsymbol{r}, f_{\omega}\left(\boldsymbol{r}_{0}\right) \mapsto f_{\omega}(\boldsymbol{r})$, so equation (4) becomes

$$
\begin{equation*}
G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right) \nabla^{2} p_{\omega}-p_{\omega} \nabla^{2} G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=-f_{\omega}\left(\boldsymbol{r}_{0}\right) G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)+p_{\omega} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \tag{5}
\end{equation*}
$$

Further, since G_{ω} satisfies reciprocity, $G_{\omega}\left(\boldsymbol{r} \mid \boldsymbol{r}_{0}\right)=G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)$. Recall also that $\delta\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right)=\delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}\right)$. Making these transformations to equation (5) yields

$$
\begin{equation*}
G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \nabla^{2} p_{\omega}-p_{\omega} \nabla^{2} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)=-f_{\omega}\left(\boldsymbol{r}_{0}\right) G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)+p_{\omega} \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}\right) \tag{6}
\end{equation*}
$$

Integrating (6) in the ' 0 ' coordinates,

$$
\begin{aligned}
& \iiint\left\{G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \nabla^{2} p_{\omega}-p_{\omega} \nabla^{2} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)\right\} d v_{0}= \\
& \left.\iiint \int-f_{\omega}\left(\boldsymbol{r}_{0}\right) G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)+p_{\omega} \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}\right)\right\} d v_{0}
\end{aligned}
$$

Applying the sifting property of the delta function on the right-hand-side, writ$\operatorname{ing} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \nabla^{2} p_{\omega}-p_{\omega} \nabla^{2} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)=\nabla_{0} \cdot\left(G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \nabla p_{\omega}-p_{\omega} \nabla G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)\right)$, and solving for $p_{\omega}(\boldsymbol{r})$,
$p_{\omega}(\boldsymbol{r})=\iiint f_{\omega}\left(\boldsymbol{r}_{0}\right) G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) d v_{0}+\iiint \boldsymbol{\nabla}_{0} \cdot\left\{G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \nabla p_{\omega}-p \boldsymbol{\nabla} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)\right\} d v_{0}$
Utilizing the divergence theorem on the left-hand-side, and writing the gradients as $\frac{\partial}{\partial n_{0}}$,
$p_{\omega}(\boldsymbol{r})=\iiint f_{\omega}\left(\boldsymbol{r}_{0}\right) G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) d v_{0}+\oiint\left\{G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right) \frac{\partial}{\partial n_{0}} p_{\omega}-p_{\omega} \frac{\partial}{\partial n_{0}} G_{\omega}\left(\boldsymbol{r}_{0} \mid \boldsymbol{r}\right)\right\} d S_{0}$
This is the Helmholtz-Kirchoff integral, matching Morse and Ingard's equation (7.1.17).

