Cylindrical waveguide, double pressure-release

Consider a waveguide with pressure-release surfaces at $z=0$ and $z=D$. A vertically oriented cylindrical source of radius a extending from $z=0$ to $z=D$ pulses radially, i.e.,

$$
u(a, \theta, z, t)=u_{0} e^{j \omega t} \quad \quad \text { (Velocity source condition) }
$$

Solve the pressure wave equation for this configuration.

Note that Blackstock mentions this kind of waveguide on page 431 but solves the case for rigid boundaries at $z=0$ and $z=D$. The case of a rigid boundary at $z=0$ and a pressure-release boundary at $z=D$, which is used as an elementary model of sound in the ocean, is dealt with in problem 12-13.

The waves are outgoing, so Hankel functions of the second kind are used. There is no θ-dependence, so $m=0$. The form of solution reads

$$
p(r, z, t)=H_{0}^{(2)}(\beta r)\left\{\begin{array}{c}
\cos k_{z} z \tag{1}\\
\sin k_{z} z
\end{array}\right\} e^{j \omega t}
$$

where $k^{2}=\beta^{2}+k_{z}^{2}$.
The pressure must vanish at $z=0$, so the $\cos k_{z} z$ term is thrown out. The pressure must also vanish at $z=D$, so $\sin k_{z} D=0$, or

$$
k_{z, n}=\frac{n \pi}{D}, \quad n=1,2, \ldots
$$

Equation (1) becomes

$$
p(r, z, t)=\sum_{n=1}^{\infty} A_{n} H_{0}^{(2)}\left(\beta_{n} r\right) \sin \left(\frac{n \pi z}{D}\right) e^{j \omega t} \quad \quad \text { (General solution) }
$$

The (Velocity source condition) is satisfied by applying the momentum equation to the above and evaluating at $r=a$:

$$
u_{0}=\frac{1}{j k \rho c_{0}} \sum_{n=1}^{\infty} \beta_{n} A_{n} H_{1}^{(2)}\left(\beta_{n} a\right) \sin \left(\frac{n \pi z}{D}\right)
$$

The coefficients A_{n} are then found by the orthogonality of sines:
$j k \rho_{0} c_{0} u_{0} \int_{0}^{D} \sin \left(\frac{m \pi z}{D}\right) \mathrm{d} z=\sum_{n=1}^{\infty} \beta_{n} A_{n} H_{1}^{(2)}\left(\beta_{n} a\right) \int_{0}^{D} \sin \left(\frac{n \pi z}{D}\right) \sin \left(\frac{m \pi z}{D}\right) \mathrm{d} z$

Solving the above for A_{n},

$$
\begin{aligned}
A_{n} & =\frac{2 j k \rho_{0} c_{0} u_{0}}{D \beta_{n} H_{1}^{(2)}\left(\beta_{n} a\right)} \int_{0}^{D} \sin \left(\frac{n \pi z}{D}\right) \mathrm{d} z \\
& =\frac{4 j k \rho_{0} c_{0} u_{0}}{\pi n \beta_{n} H_{1}^{(2)}\left(\beta_{n} a\right)}, \quad n=1,2, \ldots
\end{aligned}
$$

Using these coefficients in the (General solution) gives the particular solution. Note that many modes are excited, while only the lowest mode is excited in case of the rigid-rigid waveguide.

