

APPLIED RESEARCH LABORATORIES

THE UNIVERSITY OF TEXAS AT AUSTIN

Born approximation of acoustic radiation force used for acoustofluidic separation

<u>Chirag A. Gokani</u>

Thomas S. Jerome Michael R. Haberman Mark F. Hamilton

Applied Research Laboratories Walker Department of Mechanical Engineering The University of Texas at Austin

22nd International Symposium on Nonlinear Acoustics University of Oxford July 5th, 2022 Session 4: Radiation Force

1

Outline

- 1. Radiation force on a layered sphere in a standing plane wave
- 2. Standing surface acoustic wave (SAW) acoustofluidic devices
- 3. Born analytical solution
- 4. Born vs. full theory
- 5. Layered vs. homogenized

Jo and Guldiken, Sens. Actuator A Phys. 187, 22-28 (2012)

Radiation force on a layered cell in a 1D standing plane wave

Compare Born approximation with full theory for force on a layered cell

• Full theory [Wang et al., J. Appl. Phys. (2017); Ilinskii et al., JASA (2018)]

$$F_{z} = \frac{i\pi}{\rho_{0}c_{0}^{2}k_{0}^{2}} \sum_{n=0}^{\infty} \frac{(n+1)}{(2n+1)(2n+3)} a_{n}^{*}a_{n+1}(A_{n}^{*} + A_{n+1} + 2A_{n}^{*}A_{n+1}) + \text{c.c.}$$
Born approximation
$$F_{n} = \frac{\pi p_{0}^{2}}{\sigma_{n}} \frac{\sigma_{n}}{\sigma_{n}} \frac{2h}{\sigma_{n}} \frac{d}{\sigma_{n}} = \frac{\pi p_{0}^{2}}{\sigma_{n}} \frac{\sigma_{n}}{\sigma_{n}} \frac{1}{\sigma_{n}} \frac{1}{\sigma$$

$$F_z = \frac{\pi p_0^2}{2\rho_0 c_0^2} \Phi \sin 2k_0 d,$$

$$\Phi = f_{G,1} R_1^2 j_1(2k_0 R_1) + \sum_{n=1}^N f_{G,n+1} \left[R_{n+1}^2 j_1(2k_0 R_{n+1}) - R_n^2 j_1(2k_0 R_n) \right]$$

- Closed-form analytical result
- Obtained by summing forces on components of cell

0

 R_3

Scattering coefficients required in full solution (Wang et al., 2017)

$$A_{n.s} = -\frac{\rho_3 c_3 j'_n(z_0) [Q_2 j_n(z_3) - Y_n(z_3)] - \rho_4 c_4 j_n(z_0) [Q_2 j'_n(z_3) - Y'_n(z_3)]}{\rho_3 c_3 h'_n(z_0) [Q_2 j_n(z_3) - Y_n(z_3)] - \rho_4 c_4 h_n(z_0) [Q_2 j'_n(z_3) - Y'_n(z_3)]},$$

$$\begin{aligned} \mathcal{Q}_{1} &= \frac{\rho_{1}c_{1}Y_{n}'(x_{2})j_{n}(x_{1}) - \rho_{2}c_{2}Y_{n}(x_{2})j_{n}'(x_{1})}{\rho_{1}c_{1}j_{n}'(x_{2})j_{n}(x_{1}) - \rho_{2}c_{2}j_{n}(x_{2})j_{n}'(x_{1})}, \\ \mathcal{Q}_{2} &= \frac{\rho_{2}c_{2}[Q_{1}j_{n}(y_{2}) - Y_{n}(y_{2})]Y_{n}'(y_{3}) - \rho_{3}c_{3}[Q_{1}j_{n}'(y_{2}) - Y_{n}'(y_{2})]Y_{n}(y_{3})}{\rho_{2}c_{2}[Q_{1}j_{n}(y_{2}) - Y_{n}(y_{2})]j_{n}'(y_{3}) - \rho_{3}c_{3}[Q_{1}j_{n}'(y_{2}) - Y_{n}'(y_{2})]j_{n}(y_{3})}, \\ x_{1} &= k_{1}r_{1}, \ x_{2} &= k_{2}r_{1}, \ y_{2} &= k_{2}r_{2}, \ y_{3} &= k_{3}r_{2}, \ z_{0} &= k_{4}r_{3}, \ \text{and} \ z_{3} &= k_{3}r_{3}. \end{aligned}$$

$$\begin{aligned} Y_{p} &= -\frac{4}{(k_{4}r_{3})^{2}}\sum_{n=0}^{\infty}(n+1) \\ &\times \left[\text{Re}(\alpha_{n} + \alpha_{n+1} + 2\alpha_{n}\alpha_{n+1} + 2\beta_{n}\beta_{n+1}) \right. \\ &+ \text{Im}(\beta_{n+1}(1 + 2\alpha_{n}) - \beta_{n}(1 + 2\alpha_{n+1}))\right], \end{aligned}$$

Wang et al., J. Appl. Phys. 122, 094902 (2017)

Surface acoustic wave acoustofluidic device (Peng et al., 2020)

Fig. 1. (a) Schematic of a SSAW incident upon a three-layered model of a eukaryotic cell. (b) The origin of the local spherical coordinate system (r, θ , φ) resides at the instantaneous center of the eukaryotic cell.

Configuration considered by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)]

Jo and Guldiken, Sens. Actuator A Phys. 187, 22-28 (2012)

Configuration considered by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)]

Jo and Guldiken, Sens. Actuator A Phys. 187, 22-28 (2012)

Configuration considered by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)]

Jo and Guldiken, Sens. Actuator A Phys. 187, 22-28 (2012)

 $p_{\rm in} = 2p_0 \cos[k_0(z+d)\sin\theta_R]e^{i(k_0x\cos\theta_R-\omega t)}$

- Standing wave in *z* direction (Horizontal)
- Traveling in x direction (Vertical)

Configuration considered by Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)]

Jo and Guldiken, Sens. Actuator A Phys. 187, 22-28 (2012)

$$p_{\rm in} = 2p_0 \cos[k_0(z+d)\sin\theta_R] e^{i(k_0x\cos\theta_R - \omega t)}$$

- Standing wave in *z* direction (Horizontal)
- Traveling in x direction (Vertical)

Surface acoustic wave acoustofluidic device: Full solution

Plane wave radiated into fluid by traveling surface acoustic wave

Horizonal radiation force (full theory):

 $F_{z} = \frac{i\pi}{\rho_{0}c_{0}^{2}k_{0}^{2}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{(n+m+1)(n-m)!}{(2n+1)(2n+3)(n-m)!} a_{n}^{m*} a_{n+1}^{m} (A_{n}^{*} + A_{n+1} + 2A_{n}^{*}A_{n+1}) + \text{c.c.}$ Given by Wang et al.

$$p_{\rm in} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (\underline{a_{n+}^m + a_{n-}^m}) j_n(k_0 r) P_n^m(\cos\theta) e^{im\phi}$$
$$\underline{a_{n\pm}^m} = p_0(2n+1) i^n \frac{(n-m)!}{(n+m)!} P_n^m(\cos\theta_{\pm}) e^{im\phi_{\pm}}$$

Vertical radiation force not described by Born approximation

Born approximation of horizontal radiation force

- Incident field: $p_{in} = 2p_0 \cos[k_0(z+d)\sin\theta_R]e^{i(k_0x\cos\theta_R-\omega t)}$
- Radiation force on a volume element

$$d\mathbf{F} = -\left[f_K \nabla \langle E_p \rangle - \frac{3}{2} f_\rho \nabla \langle E_k \rangle\right] dV$$
$$= \frac{p_0^2 \tilde{k}}{2\rho_0 c_0^2} \tilde{f}_G \sin[2\tilde{k}(z+d)] \mathbf{e}_z$$

• Same form as result for 1D standing wave with

$$f_G \to \tilde{f}_G = f_K - \frac{3}{2} f_\rho \sin 2\theta_R, \quad k_0 \to \tilde{k} = k_0 \sin \theta_R$$

 p_{in} p_{sc} dV dV dV dF

• Layered cell

$$F_{z} = \frac{\pi p_{0}^{2}}{2\rho_{0}c_{0}^{2}} \Phi \sin 2\tilde{k}d,$$

$$\Phi = \tilde{f}_{G,1}R_{1}^{2}j_{1}(2\tilde{k}R_{1}) + \sum_{n=1}^{N} \tilde{f}_{G,n+1} \left[R_{n+1}^{2}j_{1}(2\tilde{k}R_{n+1}) - R_{n}^{2}j_{1}(2\tilde{k}R_{n}) \right]$$

$$\frac{n \quad \text{Material}}{1 \quad \text{Nucleus}} \frac{c_{n} \left[\text{m/s} \right]}{1508.5} \frac{\rho_{n} \left[\text{kg/m}^{3} \right]}{1430} \frac{R_{n} \left[\mu \text{m} \right]}{6}$$

$$\frac{2 \quad \text{Cytoplasm}}{3 \quad \text{Cell wall}} \frac{1450}{1500} \frac{970}{1500} \frac{15}{1500}$$

Peng et al. [J. Mech. Phys. Solids 145, 104134 (2020)]

 R_3

Born approximation vs. full theory for horizontal force

--- Full theory

Comparison of Born approximation for layered vs. homogenized cell

• Homogenization is based on volume average of compressibilities and densities of the layers:

Comparison of Born approximation for layered vs. homogenized cell

 Homogenization is based on volume average of compressibilities and densities of the layers:

 $10 \ \mu \mathrm{m} \le R_3 \le 30 \ \mu \mathrm{m}$

 $10^{\circ} \leq \theta_R \leq 90^{\circ}$

Comparison of Born approximation for layered vs. homogenized cell

• Homogenization is based on volume average of compressibilities and densities of the layers:

 $10 \ \mu \mathrm{m} \le R_3 \le 30 \ \mu \mathrm{m}$

 $10^{\circ} \le \theta_R \le 90^{\circ}$

Summary

- Closed form solutions often available in Born approximation
- Accurately describes horizontal forces in acoustofluidic devices
- Accurate for inhomogeneous objects on the order of one wavelength
- Homogenization inaccurate unless $kR \ll 1$
- Normal restriction applies—acoustic contrast of objects must not differ substantially from that of host fluid

Extra slides

EXTRA: Radiation force on a nucleated cell

Compare Born approximation with theory for force on a nucleated cell*

Based on theory for radiation force on a sphere

$$F_z = \frac{i\pi}{\rho_0 c_0^2 k_0^2} \sum_{n=0}^{\infty} \frac{(n+1)}{(2n+1)(2n+3)} a_n^* a_{n+1} (A_n^* + A_{n+1} + 2A_n^* A_{n+1}) + \text{c.c.}$$

- Spherical wave expansion coefficients a_n for axisymmetric incident field
- Scattering coefficients A_n for spherically symmetric scatterer

*Wang et al., J. Appl. Phys. **122**, 094902 (2017)

• Cell modeled as a sphere surrounded by N = 2 layers:

	Material	$f_{G,n}$
1	Nucleus	0.6428
2	Cytoplasm	0.0106
3	Cell membrane	-0.1339
0	Water (reference)	

• Neglect shear and absorption in cell

EXTRA: Radiation force on a nucleated cell Full theory (Wang et al.) Born approximation 0.2 F_z/F_0 0.1 0 (a) (b) (c) -0.1 (f) (d) (e) 0.2 F_{z}/F_{0} 0.1 0

-0.1 30 50 50 50 10 20 30 0 10 20 40 0 10 20 30 40 40 0 Frequency [MHz] Frequency [MHz] Frequency [MHz]

Extra: Wang et al. full theory

$$p_1 = p_0 e^{-i\omega t} \sum_{n=0}^{\infty} (2n+1)i^n P_n(\cos\theta) [F_n j_n(k_1 r)], \quad (3)$$

$$p_{i} = p_{0}e^{-i\omega t}\sum_{n=0}^{\infty} (2n+1)i^{n}j_{n}(k_{4}r)P_{n}(\cos\theta), \qquad p_{2} = p_{0}e^{-i\omega t}\sum_{n=0}^{\infty} (2n+1)i^{n}P_{n}(\cos\theta)[D_{n}j_{n}(k_{2}r) + E_{n}Y_{n}(k_{2}r)],$$

$$(4)$$

$$p_{s} = p_{0}e^{-i\omega t}\sum_{n=0}^{\infty} (2n+1)i^{n}A_{n.s}h_{n}^{(1)}(k_{4}r)P_{n}(\cos\theta), \qquad p_{3} = p_{0}e^{-i\omega t}\sum_{n=0}^{\infty} (2n+1)i^{n}P_{n}(\cos\theta)[B_{n}j_{n}(k_{3}r) + C_{n}Y_{n}(k_{3}r)].$$

$$A_{n.s} = -\frac{\rho_3 c_3 j'_n(z_0) [Q_2 j_n(z_3) - Y_n(z_3)] - \rho_4 c_4 j_n(z_0) [Q_2 j'_n(z_3) - Y'_n(z_3)]}{\rho_3 c_3 h'_n(z_0) [Q_2 j_n(z_3) - Y_n(z_3)] - \rho_4 c_4 h_n(z_0) [Q_2 j'_n(z_3) - Y'_n(z_3)]},$$

$$Q_{1} = \frac{\rho_{1}c_{1}Y'_{n}(x_{2})j_{n}(x_{1}) - \rho_{2}c_{2}Y_{n}(x_{2})j'_{n}(x_{1})}{\rho_{1}c_{1}j'_{n}(x_{2})j_{n}(x_{1}) - \rho_{2}c_{2}j_{n}(x_{2})j'_{n}(x_{1})},$$

$$Q_{2} = \frac{\rho_{2}c_{2}[Q_{1}j_{n}(y_{2}) - Y_{n}(y_{2})]Y'_{n}(y_{3}) - \rho_{3}c_{3}[Q_{1}j'_{n}(y_{2}) - Y'_{n}(y_{2})]Y_{n}(y_{3})}{\rho_{2}c_{2}[Q_{1}j_{n}(y_{2}) - Y_{n}(y_{2})]j'_{n}(y_{3}) - \rho_{3}c_{3}[Q_{1}j'_{n}(y_{2}) - Y'_{n}(y_{2})]j_{n}(y_{3})},$$

$$x_{1} = k_{1}r_{1}, x_{2} = k_{2}r_{1}, y_{2} = k_{2}r_{2}, y_{3} = k_{3}r_{2}, z_{0} = k_{4}r_{3}, \text{ and } z_{3} = k_{3}r_{3}.$$

$$Y_{p} = -\frac{4}{(k_{4}r_{3})^{2}} \sum_{n=0}^{\infty} (n+1)$$

× [Re($\alpha_{n} + \alpha_{n+1} + 2\alpha_{n}\alpha_{n+1} + 2\beta_{n}\beta_{n+1})$
+ Im($\beta_{n+1}(1 + 2\alpha_{n}) - \beta_{n}(1 + 2\alpha_{n+1}))$],

Wang et al., J. Appl. Phys. **122**, 094902 (2017)

Extra: Rayleigh angle

Peng et al., J. Mech. Phys. Solids. 145, 104134 (2020)