Growth rates of harmonics in nonlinear vortex beams

<u>Chirag A. Gokani¹</u> John M. Cormack² Mark F. Hamilton¹

¹Applied Research Laboratories and the Walker Department of Mechanical Engineering ²Division of Cardiology, Department of Medicine, University of Pittsburgh

185th Meeting of the Acoustical Society of America General Topics in Physical Acoustics: 5aPA1 Friday, December 8th, 2023 Sydney, Australia

Outline

- 1. What is an acoustic vortex beam?
- 2. Linear solutions
- 3. Motivation to study nonlinear solution
- 4. Geometry of Bessel vortex beam
- 5. Numerical solution of Westervelt equation
- 6. Comparison to Fubini coefficients
- 7. Summary

What is an acoustic vortex beam?

Richard et al., New J. Phys. (2020)

l=+1l=+2l=+3l=+4AmplitudeImage: Constraint of the second second

Shi et al., Proc. NAS. (2017)

- Orbital number ℓ = number of wavefronts in transverse plane
- Characterized by null on axis
- Unfocused beams used for communication
- Focused beams used for radial and axial particle manipulation
- Generated using phase plates, transducer arrays, metasurfaces

Gspan et al., JASA (2003) Terzi et al., MUPB (2017)

Marzo et al., Phys. Rev. Lett. (2018)

Li et al., Wiley (2022)

3

Linear solutions

Helmholtz equation

$$\nabla^2 p + k^2 p = 0$$

Fourier acoustics solution of Helmholtz equation

$$p(x,y,z) = \mathcal{F}_{\rm 2D}^{-1} \left\{ e^{ik_z z} \mathcal{F}_{\rm 2D}[p(x,y,0)] \right\}, \quad k_z = (k^2 - k_x^2 - k_y^2)^{1/2}$$

Rayleigh integral solution of Helmholtz equation

$$p(r,\theta,z) = -\frac{ikz}{2\pi} \int_0^{2\pi} \int_0^{\infty} p(r_0,\theta_0,0) \left(1 - \frac{1}{ikR}\right) \frac{e^{ikR}}{R^2} r_0 dr_0 d\theta_0, \quad R = |\mathbf{r} - \mathbf{r}_0|$$

Paraxial equation

$$\nabla_{\perp}^2 q + 2ik \frac{\partial q}{\partial z} = 0, \quad p = qe^{ikz}$$

Fourier acoustics solution of paraxial equation

$$p(x,y,z) = \mathcal{F}_{\rm 2D}^{-1} \left\{ e^{ik_z z} \mathcal{F}_{\rm 2D}[p(x,y,0)] \right\}, \quad k_z = k - (k_x^2 + k_y^2)/2k$$

Typical pressure source conditions

$$\begin{split} p(r,\theta,0) &= p_0 e^{-r^2/a^2} e^{i\ell\theta} & \text{Gaussian vortex} \\ p(r,\theta,0) &= p_0 \operatorname{circ}(r/a) e^{i\ell\theta} \\ & (\times e^{-ikr^2/2d}, e^{i\ell\theta}) \\ p(r,\theta,0) &= p_0 J_\ell(k_r r) e^{i\ell\theta} & \text{Bessel vortex} \end{split}$$

Laguerre-Gauss eigenfunctions of paraxial equation

$$q(r,\theta,z) = \sum_{n,m} A_n^m LG_{nm}(r,\theta,z)$$

Integral solution of paraxial equation

$$q(r,\theta,z) = -\frac{ik}{2\pi z} \int_0^{2\pi} \int_0^{\infty} q(r_0,\theta_0,0) e^{i(k/2z)[r^2 + r_0^2 - 2rr_0\cos(\theta_0 - \theta)]} r_0 dr_0 d\theta_0$$

Gokani et al., "Paraxial and ray theory models of acoustic vortex beams" (in preparation)

Motivation to study nonlinear solution

- Spiral wavefront carries orbital angular momentum (OAM)
- Wavefront travels farther than it would in the absence of OAM ($\ell = 0$)
- Phase evolves more rapidly due to extra path length in z direction
- Nonlinear effects in z direction occur over shortened length scale

Geometry of Bessel vortex beam

Bessel vortex beam
$$p(r, \theta, z) = p_0 J_\ell(k_r r) e^{i(k_z z + \ell \theta)}$$
Surface of const. phase
 $f(z, \theta) = k_z z + \ell \theta$ $k_z = \sqrt{k^2 - k_r^2}$ Wave normal^{1,2} $\mathbf{n} = \frac{\nabla f}{|\nabla f|} = \frac{k_z r \mathbf{e}_z + \ell \mathbf{e}_{\theta}}{\sqrt{(k_z r)^2 + \ell^2}}$ Angle w.r.t. z axis
 $\tan \phi = \frac{\ell}{k_z r}$ $z = s \cos \phi$ Burgers equation in terms of s $\frac{\partial p}{\partial s} - \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial \tau^2} = \frac{\beta p}{\rho_0 c_0^3} \frac{\partial p}{\partial \tau}$
where $s = z/\cos \phi$ Reduced shock-formation distance $\overline{z} = \frac{\cos \phi}{\beta k \epsilon(r)} = \frac{k_z r}{\sqrt{(k_z r)^2 + \ell^2}} \frac{1}{\beta k \epsilon(r)}$ $\overline{z} \le \frac{1}{\beta k \epsilon}$ since $\cos \phi \le 1$

> Compare to numerical solution of Westervelt equation to test claim

¹Pierce, Acoustics: An Introduction to Its Physical Principles and Applications, Chap. 8 (Springer 2019).

Numerical solution of Westervelt equation

Inputs parameters					
ℓ	orbital number				
ka	ratio of source size to wavelength	+ source			
В	ratio of diffraction to nonlinearity	condition			
Α	ratio of attenuation to diffraction				

Numerical solution based on operator splitting^{1,2} $\frac{\partial^2 p}{\partial \tau \partial z} = \frac{c_0}{2} \nabla^2 p$ $p_n(x, y, z + \Delta z) = \mathcal{F}_{2D}^{-1} \left\{ \exp\left(i\sqrt{k_n^2 - k_x^2 - k_y^2}\Delta z - ik_n\Delta z\right)\mathcal{F}_{2D}[p_n(x, y, z)] \right\}$ DiffractionFourier acoustics $\frac{\partial p}{\partial z} = \frac{\beta}{2\rho_0 c_0^3} \frac{\partial p^2}{\partial \tau}$ \cdots Nonlinearity $\frac{\partial p_n}{\partial z} = \frac{in\beta\omega}{\rho_0 c_0^3} \left(\sum_{k=1}^{N_{max}-n} p_k p_{n+k}^* + \frac{1}{2} \sum_{k=1}^{n-1} p_k p_{n-k} \right)$ NonlinearityRunge-Kutta 4th order method $\frac{\partial p}{\partial z} = \frac{\delta}{2c_0^3} \frac{\partial^2 p}{\partial \tau^2}$ \cdots $p_n(x, y, z + \Delta z) = p_n(x, y, z) \exp[-(\omega_n^2 \delta/2c_0^3)\Delta z]$ AbsorptionExponential decay

¹Yuldashev and Khokhlova, Acoustical Physics (2011) ²Lee and Hamilton, JASA (1995)

Comparison to Fubini coefficients

solved numerically

Mapping
$$\sigma$$
 to $Z = z/z_0$

$$\sigma = \frac{s}{\bar{z}} = \frac{z\beta k\epsilon(r)}{\cos\phi} = \eta Z$$

$$\implies \eta = \frac{z_0\beta\epsilon(r)k}{\cos\phi} = 0.6$$

Inputs parameters				
$\ell = 1$	orbital number			
ka = 1	ratio of source size to wavelength			
B = 1	ratio of diffraction to nonlinearity			
<i>A</i> = 0.01	ratio of attenuation to diffraction			

Bessel vortex source $p(r, \theta, 0) = p_0 J_\ell(\mu r) e^{i\ell\theta}$

Fubini solution

$$p(\sigma, \theta) = p_0 \sum_{n=1}^{\infty} \frac{2}{n\sigma} J_n(n\sigma) \sin n\omega\tau$$

$$= p_0 \sum_{n=1}^{\infty} B_n(\sigma) \sin n\omega\tau$$

$$B_1 = 1 + \mathcal{O}(\sigma^2)$$

$$B_2 = \frac{1}{2}\sigma + \mathcal{O}(\sigma^3)$$

$$B_3 = \frac{3}{8}\sigma^2 + \mathcal{O}(\sigma^4)$$

$$B_4 = \frac{1}{3}\sigma^3 + \mathcal{O}(\sigma^5)$$

$$B_5 = \frac{125}{384}\sigma^4 + \mathcal{O}(\sigma^6)$$

Thanks for listening!

Summary

- Developed geometric interpretation of Bessel vortex beam
- Numerically solved Westervelt equation for Bessel vortex source condition
- Mapped Fubini solution to nonlinear evolution along ray of path length $s = z/\cos\phi$
- Compared Fubini solution in terms of s to numerical solution to Westervelt equation

Acknowledgments

ARL:UT Chester M. McKinney Graduate Fellowship in Acoustics

Extra slides

Unfocused linear vortex beams

Analytical solution of paraxial equation for Gaussian vortex source

$$q(r,\theta,z) = \sqrt{8\pi} \frac{p_0 z}{kr^2} \chi^{3/2} e^{-\chi} \left[I_{(\ell-1)/2}(\chi) - I_{(\ell+1)/2}(\chi) \right] e^{i[\ell\theta - (\ell+1)\pi/2 + kr^2/2z]}$$

$$\chi(r,z) = \frac{(kar/z)^2}{8[1 - i(ka^2/2z)]}$$

Power	Laguerre-Gauss eigenfunctions of paraxial equation	10
$\mathcal{P}_0 = \frac{\pi a^2 p_0^2}{4\rho_0 c_0}$	$q(r,\theta,z) = \sum_{n,m}^{\infty} A_n^m \operatorname{LG}_{nm}(r,\theta,z),$ $\operatorname{LG}_{nm}(r,\theta,z) = N_n^m \frac{1}{r(r)} \left(\frac{\sqrt{2}r}{r(r)}\right)^{ m } L_n^m \left(\frac{2r^2}{r(r)}\right)$	
independent of orbital number	$\times \exp\left\{-\frac{r^2}{w^2(z)} + i\left[m\theta + \frac{kr^2}{2R(z)} - (2n+ m +1)\phi(z)\right]\right\}$	$ \begin{array}{c} 2 \\ 0 \\ 0 \\ 2 \\ 4 \\ \ell \end{array} $

Focused linear vortex beams

z/d

ka = 500, d/a = 10

Focused linear vortex beams

Focused linear vortex beams: "cupped hands" phenomenon

14

Gaussian amplitude shading

Raised cosine amplitude shading

Figure board

$$\mathcal{F}_{\rm 2D} = 2D$$
 spatial Fourier transform $k_n \stackrel{\uparrow}{=} n\omega/c_0$

 B_1

 B_2

 B_3

 B_4

 B_5

 B_n

 \hat{q} is a function of a complex variable: resort to numerical root finding

$$P(\sigma, \theta) = \sum_{n=1}^{\infty} B_n(\sigma) \sin n\theta$$

$$\sigma = z/\bar{z}, \quad \theta = \omega\tau$$
Fubini coefficients (--)

$$B_1 = 1 - \frac{1}{8}\sigma^2 + \mathcal{O}(\sigma^4)$$

$$B_2 = \frac{1}{2}\sigma + \mathcal{O}(\sigma^3)$$

$$B_3 = \frac{3}{8}\sigma^2 + \mathcal{O}(\sigma^4)$$

$$B_4 = \frac{1}{3}\sigma^3 + \mathcal{O}(\sigma^5)$$

$$B_5 = 0.3255\sigma^4 + \mathcal{O}(\sigma^6)$$

$$B_n = \frac{(n\sigma)^{n-1}}{2^{n-1}n!} + \mathcal{O}(\sigma^{n+1}).$$

Figure board

 $\eta = 0.6$ (analytical)

²Morfey and Cotaras, "Propagation in Inhomogeneous Media (Ray Theory)," *Nonlinear Acoustics*, Hamilton and Blackstock, eds. (ASA 2008).

Outline

Background

- 1. What is an acoustic vortex beam?
- 2. Linear solutions
- 3. Motivation to study nonlinear solution

Nonlinear solution

- 1. Geometry of Bessel vortex beam
- 2. Numerical solution of Westervelt equation
- 3. Comparison to Fubini coefficients

Closing

1. Sources of error

2. Summary

