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Abstract: Analytical solutions for acoustic vortex beams radiated by sources with uniform circular amplitude distributions are
derived in the paraxial approximation. Evaluation of the Fresnel diffraction integral in the far field of an unfocused source and
in the focal plane of a focused source leads to solutions in terms of an infinite series of Bessel functions for orbital numbers
£ > —2. These solutions are reduced to closed forms for 0 < ¢ < 4, which correspond to orbital numbers commonly used in

experiments. A scaling law for the vortex ring radius is derived, and its relevance is characterized using ray theory. © 2024
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1. Introduction

Acoustic vortex beams possess helical wavefronts characterized by the orbital number ¢. They were first introduced in
acoustics by Hefner and Marston'” and have since been used for particle manipulation,” '* underwater communica-
tion,"”"” medical ultrasound,”’** and sound diffusion.”’

Vortex beams can be modeled using Laguerre-Gaussian eigenfunctions,” but the fact that an infinite number of
terms is needed to match source conditions®* *° limits their utility. Closed-form analytical solutions are available for
Bessel”’ *’ and Gaussian™® vortex beams, but these beams are generated by idealized sources. In practice, acoustic vortex
beams are typically radiated from a uniform circular amplitude distribution,”””' ** often referred to as a circular piston.
The goal of the present Letter is to derive analytical solutions in the paraxial approximation for regions of interest in vor-
tex beams radiated by this more commonly employed amplitude distribution.

The Fresnel diffraction integral is used in Sec. 2 to obtain analytical solutions for the far field of an unfocused
vortex beam radiated by a source with a uniform circular amplitude distribution. Analytical solutions in the focal plane
are obtained in Sec. 3 from the same diffraction integral for a spherically focused source with the same amplitude distribu-
tion. In both cases, the analytical solutions are expressed as infinite summations of Bessel functions, which are then
reduced to closed forms for orbital numbers 0 < ¢ < 4. A scaling law for the vortex ring radius is derived in Sec. 4, and
its practical relevance is discussed in Sec. 5 by appealing to ray theory. The authors make frequent use of relations devel-
oped in their previously published work on vortex beams,”® referred to below as the companion paper.

2. Unfocused uniform circular vortex source

Solutions of the paraxial equation

0
zik8—3+viq:o (1)
are sought in cylindrical coordinates (r, 0, z) for an unfocused vortex beam having a uniform source pressure p, within a
circle of radius g,

q(r,0,0) = po circ(r/a) s 2)

kz—wt
2=0t) - where

where circ(e) =1 for « <1 and 0 for a > 1. The acoustic pressure with angular frequency ® is p = gel
k= /¢y is the wavenumber and ¢, is the sound speed. The validity of the paraxial approximation underlying Eq. (1) in
the context of vortex beams radiated by unfocused and focused circular pistons has been discussed in Secs. IV and V of

the companion paper.”® The field radiated by a circular piston oscillating in the z direction with velocity uy can be
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described in the paraxial approximation by replacing py in Eq. (2) with pycoug, where p, is the ambient density of the

fluid.™
The Fresnel diffraction integral is an exact solution of Eq. (1) for any source function g(r, 0, 0):
ik [ ( i(k/2z) [r2+r272rro cos(0o —9)}
q(r,0,z) = e q(ro,00,0)e o rodrodby. (3)
o Jo

Combining Eqgs. (2) and (3) and applying the relations in Egs. (8) and (9) of the companion paper”® yields
N AT T L
q(r,0,z) = —ikpgp———€" e o/ Jy(krro/z) rodro, (4)
z 0
where J, is the Bessel function of the first kind of order n. For z >> z, where zg = ka?/2 is the Rayleigh distance, Eq. (4)
reduces to
1. “
q(r,0,z) = —ikpy ;e’[(e’“/z) J Jo(krro/z) rodry,  z>> zg, (5)
0
resulting in the analytical solution

qe(r,0,2) = —ipoée”“"*“/ JFy(kar/z), z>> z, (6)

where™
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and I' is the gamma function. Equation (7), which is restricted to ¢ > —2, is equivalent to the following closed-form
expressions for 0 < ¢ < 4:

=0 Fy(&) =¢&nh(d), (8a)

(=1 F(&) =T EH(&A(S) — Hi(Oh(&), (85)

=2 F (& =2-2Jp(& —&n(d), (8¢)
3n . . 3n

(=3 B = |:7€H0(§) - 8}]1(5) + {4C —TéHl(f)}]o(f), (8d)

C=4 Fy(&) =4 811(8)/& — 412(8) — & (8), (8e)

where Hy and H, are the zeroth- and first-order Struve functions. In the limiting case ¢ = 0, Eq. (6) with Eq. (8a) recovers
the far-field paraxial pressure radiated by a circular piston,

ka® 2], (kar/z)

q(rv 01 Z) = —ipo5—

2z kar/z e>a, (=0 ©

36

The validity of Eq. (6) is assessed by comparison with the field calculated using the angular spectrum method,

a(x.y,2) = F{ e Folaey.0) }, (10)
where the z component of the wave vector in the paraxial approximation is
k. =k itk 11
e =k-—p 11

in order for Eq. (10) to be an exact solution of Eq. (1). The forward and inverse 2D Fourier transforms F,, and .7-";; are
defined by Egs. (25) and (26) of the companion paper,”® with Eq. (2) expressed in Cartesian coordinates as

Q(&% 0) = po circ( /x2 +y2/a> eilarctan(y/x) (12)

for the source function used in Eq. (10), with arctan(y/x) calculated using the function atan2(y,x). Equations (10) and
(11) combined are equivalent to Eq. (4). In Fig. 1, the validity of the far-field approximation z >> zp is assessed by com-
paring Egs. (6) and (10) for 0.5 < z/zg < 4 and 0 < ¢ < 4. The comparison reveals that Eq. (6) approximates the exact
solution of Eq. (1) reasonably well for z/zz ~ 2 and that convergence is achieved for z/zx = 4.

3. Focused uniform circular vortex source

To describe spherical focusing with a geometric focal length of d in the paraxial approximation, the source condition in
Eq. (2) is multiplied by exp(—ikr?/2d):
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Fig. 1. Comparison of the analytical solution of the paraxial equation in the far field given by Eq. (6) (blue lines) with the numerical solution
of the paraxial equation calculated using Eq. (10) (red lines) for the source condition given by Eq. (12) with 0 < ¢ < 4 and z/zz = 0.5, 1, 2,

and 4.
q(r,0,0) = py circ(r/a) e /24 0. (13)
Combining Egs. (3) and (13) and evaluating the integral over 6 using Eq. (9) of the companion paper”® results in
eikr2/2z ) a L
q(r,0,z) = —ikpoTe’M*“/z) [ /ka*/22)(1=z/d)r [a Jo(krro/z) rodro. (14)
Jo
The integral reduces to the form of Eq. (7) in the focal plane, z = d, resulting in
d wrind i
4, 0,d) = —ipo 3 4461 (kar ), (15)

where F; is given again by Egs. (8) for 0 < ¢ < 4. A solution in the form of Eq. (15) in combination with Eq. (8b) was
obtained previously in optics by Sacks et al.”” for £ = 1. In the limiting case £ = 0, Eq. (15) reduces to

k_“zeikrz/zd 2]y (kar/d)
2d kar/d
recovering the paraxial pressure field in the focal plane of a spherically focused circular piston. Comparison with numeri-

cal solutions based on Egs. (10) and (11), not shown here, reveals that Eq. (15) satisfies Eq. (1), with Eq. (13) expressed in
Cartesian coordinates:

q(r,0,d) = —ipo . 0=, (16)

q(x,y,0) = po Circ( /32 +y2/a> o k(3 +y?) /24 itarctan(y/x) (17)

Limitations on the accuracy of the paraxial approximation for a focused uniform circular piston as the ratio d/a is reduced
are assessed as functions of ka and ¢ in the right column of Fig. 5 in the companion paper.*

4. Vortex ring radius

38,39 26,30

The vortex ring radius is a traditional characteristic of a vortex beam in both optics and acoustics. For unfocused
vortex beams, the ring radius is defined as the distance from the z axis to the first local maximum, whereas for focused
vortex beams, the definition of ring radius is normally restricted to the focal plane, z = d.

The ring radius can be calculated by setting the r derivative of the magnitude of Egs. (6) and (15) to zero, which
is equivalent to solving d|¢ ™' Fy(&)|/dé = 0, where & = kar/z for Eq. (6) and & = kar/d for Eq. (15). Using Eq. (7) for F,
leads to the relation®
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Table 1. Roots &, of Eq. (18) for 1 < ¢ < 10.

l 1 2 3 4 5 6 7 8 9 10
& 2.4516 3.9227 5.2620 6.5356 7.7683 8.9726 10.1559 11.3227 12.4763 13.6191

i (C+2k+1)I(0/2 + k) [Je4ax(E) = Jrgaks2(E) B Jeyak1(€)
C(/2+2+k) 28 &

=0. (18)
k=0

The roots £, of Eq. (18) that were found numerically are listed in Table 1 for 1 < ¢ < 10. A least-squares fit results in the
linear relation

& = 1.230 + 1.49. (19)
The relations &, = kar;/z for Eq. (6) and &, = kar,/d for Eq. (15) yield

m:%, z> zp (20)
ka
for the ring radius in the far field of an unfocused vortex beam described by Eq. (6) and
posd g 1)
ka
in the focal plane of a focused vortex beam described by Eq. (15). Practical limitations of Eqs. (20) and (21) are discussed

in Sec. 5.

5. Comparisons with ray theory

Equations (20) and (21) accurately predict that the radius of the first local maximum of the magnitudes of Eqgs. (6) and
(15) is a linear function of ¢. In practice, however, the position of the global maximum of the field is often of greater
interest. Ray theory is used in the companion paper”® to show that the radial position of the global maximum is a nonlin-
ear function of ¢ for both unfocused and focused vortex beams, which limits the utility of Eqs. (20) and (21).

Since the ray theory developed in the companion paper”® describes fields that in the immediate vicinity of the
source have the form p = pof(r)e/"0%) the analysis in that work can be applied to Eq. (2) by setting ¢ = £0 + kz.
Specification of the amplitude distribution f(r) is unnecessary when considering only the geometry of the ray channels
and caustics, which is of interest here, not the pressure amplitude predicted by ray theory. For the prescribed phase ¢, a
paraboloidal caustic surface given by Eq. (64) of the companion paper™ predicts that the radial coordinate of the global
maximum is proportional to £1/2, in contrast with the linear dependence on ¢ predicted by Eq. (20) above for the radius
of the first local maximum. The nonlinear dependence on ¢ of the distance from the z axis to the global maximum is dem-
onstrated in Fig. 2, which is generated by overlaying Egs. (62) and (64) in the companion paper”® for the ray channels
and caustics, respectively, on the amplitude of the paraxial pressure field given by Eqs. (10)-(12).

To apply the analysis in the companion paper’® to Eq. (13), ¢ is set to —kr?/2d + £0 + kz, for which the global
maximum is redistributed over the surface of a spheroidal caustic in the prefocal region given by Eq. (55) of the compan-
ion paper, and the distance from the z axis is again proportional to M2 In Fig. 3, the paraxial field corresponding to Eq.
(17) for G = 10 and 20, where G = ka®/2d is the focal gain, is calculated and shown together with the ray channels and
caustics given by Eqs. (40) and (55) of the companion paper,”® respectively. Figure 3 shows that while the global

6

Fig. 2. Overlays of Eqs. (64) and (62) of the companion paper (Ref. 26) for the caustics (thick lines) and annular ray channels (thin lines),
respectively, on color plots for the magnitude of the paraxial field obtained from Eqgs. (10) and (12) for several values of £. Only ray channels
emanating from the circular source occupying the region r/a < 1 are shown. The color plots are normalized such that red corresponds to the
maximum pressure amplitude in each subplot and blue corresponds to zero pressure amplitude.

JASA Express Lett. 4 (12),124001(2024) 4,124001-4
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Fig. 3. Overlays of Egs. (55) and (40) of the companion paper (Ref. 26) for the caustics (thick lines) and annular ray channels (thin lines),
respectively, on color plots for the magnitude of the paraxial field obtained from Egs. (10) and (17) for G = 10 (first row) and G = 20 (second
and third rows) and several values of /. See the caption of Fig. 2 for an explanation of the color map.

maximum conforms to a toroid in the focal plane for low /, it drifts out of the focal plane as ¢ increases, no longer coin-
ciding with the vortex ring radius provided by Eq. (21).

The paraxial solutions for f(r) = circ(r/a) in Figs. 2 and 3 do not conform as well to the caustics as do the par-
axial solutions for the Gaussian amplitude distribution f(r) = ¢”"/*' in Figs. 8 and 9 of the companion paper.” The dis-
crepancies are due to the discontinuity of f(r) = circ(r/a) at r = a, which makes the effects of diffraction substantially
*° Despite the complexity of the field, the diffraction
patterns in Figs. 2 and 3 are coincident with the features of the ray channels, and the caustics are reasonable demarcations

more prominent in the present work than in the companion paper.

of borders of the global maxima and shadow zones for ¢ > 0. As G is increased in Fig. 3, the diffraction and ray features
align better because increasing ka tends toward the infinite frequency limit that underlies ray theory. Although the orbital
numbers and focal gains are different for each plot in the first and third rows, the caustics and ray channels are identical
in those two rows because they are invariant for constant ¢/k (see Ref. 26), corresponding to constant ¢/G in Fig. 3.

It is noted that for the raised cosine source function mentioned two paragraphs above Eq. (62) in the companion
paper’® as a practical approximation of an infinitely wide Gaussian source function, the raised cosine should have an
upper limit of 2a instead of a.

6. Conclusion

The Fresnel diffraction integral was used to derive analytical solutions in the paraxial approximation for acoustic vortex
beams radiated by uniform circular amplitude distributions. The solutions are valid in the far field of an unfocused source
and in the focal plane of a focused source. Diffraction theory predicts that the radius of the vortex ring in these regions
increases linearly with ¢, while ray theory predicts that the distance from the beam axis to the global maximum in the field
increases nonlinearly with ¢. The analytical solutions may prove useful for investigating various features of vortex beams
radiated by circular pistons.

Acknowledgments
C.A.G. was supported by the Applied Research Laboratories Chester M. McKinney Graduate Fellowship in Acoustics.

Author Declarations
Conflict of Interest

The authors have no conflicts to disclose.
Data Availability
The data that support the findings of this study are available within the article.

References

'B. T. Hefner and P. L. Marston, “Acoustical helicoidal waves and Laguerre-Gaussian beams: Applications to scattering and to angular
momentum transport,” J. Acoust. Soc. Am. 103, 2971 (1998).

JASA Express Lett. 4 (12),124001(2024) 4,124001-5


https://doi.org/10.1121/1.422390
https://scitation.org/journal/jel

’:5.7.'..7.'5‘3;__ ARTICLE

2B. T. Hefner and P. L. Marston, “An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater
systems,” J. Acoust. Soc. Am. 106, 3313-3316 (1999).
35, T. Kang and C. K. Yeh, “Potential-well model in acoustic tweezers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1451-1459
(2010).
“L. Zhang and P. L. Marston, “Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects,” Phys.
Rev. E 84, 065601 (2011).
SA. Anhiuser, R. Wunenburger, and E. Brasselet, “Acoustic rotational manipulation using orbital angular momentum transfer,” Phys. Rev.
Lett. 109, 034301 (2012).
®D. Baresch, J.-L. Thomas, and R. Marchiano, “Spherical vortex beams of high radial degree for enhanced single-beam tweezers,” J. Appl.
Phys. 113, 184901 (2013).
7R. Wunenburger, J. 1. V. Lozano, and E. Brasselet, “Acoustic orbital angular momentum transfer to matter by chiral scattering,” New .
Phys. 17, 103022 (2015).
87. Hong, ]. Zhang, and B. W. Drinkwater, “Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to
diphasic liquid-microparticle mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
o, Wang, M. Ke, W. Li, Q. Yang, C. Qiu, and Z. Liu, “Particle manipulation with acoustic vortex beam induced by a brass plate with spiral
shape structure,” Appl. Phys. Lett. 109, 123506 (2016).
°M. Baudoin, J.-C. Gerbedoen, A. Riaud, O. B. Matar, N. Smagin, and J.-L. Thomas, “Folding a focalized acoustical vortex on a flat holo-
graphic transducer: Miniaturized selective acoustical tweezers,” Sci. Adv. 5, eaav1967 (2019).
"Z. Gong and M. Baudoin, “Particle assembly with synchronized acoustic tweezers,” Phys. Rev. Appl. 12, 024045 (2019).
12A. Marzo and B. W. Drinkwater, “Holographic acoustic tweezers,” Proc. Natl. Acad. Sci. U.S.A. 116, 84-89 (2019).
13T, M. Marston and P. L. Marston, “Modulated helicity for acoustic communications and helicity-selective acoustic receivers,” ]. Acoust. Soc.
Am. 127, 1856 (2010).
V. Bollen, D. J. Zartman, T. M. Marston, and P. L. Marston, “Measured scattering of a first-order vortex beam by a sphere: Cross-helicity
and helicity-neutral near-forward scattering and helicity modulation,” Proc. Mtgs. Acoust. 19, 070075 (2013).
'5C. shi, M. Dubois, Y. Wang, and X. Zhang, “High-speed acoustic communication by multiplexing orbital angular momentum,” Proc. Natl.
Acad. Sci. U.S.A. 114, 7250-7253 (2017).
'8X. Jiang, B. Liang, J.-C. Cheng, and C.-W. Qiu, “Twisted acoustics: Metasurface-enabled multiplexing and demultiplexing,” Adv. Mater. 30,
1800257 (2018).
17X Jiang, C. Shi, Y. Wang, J. Smalley, J. Cheng, and X. Zhang, “Nonresonant metasurface for fast decoding in acoustic communications,”
Phys. Rev. Appl. 13, 014014 (2020).
187 Sun, Y. Shi, X. Sun, H. Jia, Z. Jin, K. Deng, and J. Yang, “Underwater acoustic multiplexing communication by pentamode metasurface,”
J. Phys. D: Appl. Phys. 54, 205303 (2021).
M. E. Kelly and C. Shi, “Design and simulation of acoustic vortex wave arrays for long-range underwater communication,” JASA Express
Lett. 3, 076001 (2023).
207 Ozcelik, J. Rufo, F. Guo, Y. Gu, P. Li, J. Lata, and T. J. Huang, “Acoustic tweezers for the life sciences,” Nat. Methods 15, 1021-1028
(2018).
218, Jiménez-Gambin, N. Jiménez, and F. Camarena, “Transcranial focusing of ultrasonic vortices by acoustic holograms,” Phys. Rev. Appl.
14, 054070 (2020).
225, Guo, Z. Ya, P. Wu, L. Zhang, and M. Wan, “Enhanced sonothrombolysis induced by high-intensity focused acoustic vortex,” Ultrasound
Med. Biol. 48, 1907-1917 (2022).
23N. Jiménez, J. P. Groby, and V. Romero-Garcfa, “Spiral sound-diffusing metasurfaces based on holographic vortices,” Sci. Rep. 11, 10217
(2021).
24R. Marchiano and J.-L. Thomas, “Synthesis and analysis of linear and nonlinear acoustical vortices,” Phys. Rev. E 71, 066616
(2005).
25X Pan, J. Wu, Z. Li, C. Zhang, C. Deng, Z. Zhang, H. Wen, Q. Gao, J. Yang, Z. Yi, M. Yu, L. Liu, F. Chi, and P. Bai, “Laguerre-Gaussian
mode purity of Gaussian vortex beams,” Optik 230, 166320 (2021).
26C. A. Gokani, M. R. Haberman, and M. F. Hamilton, “Paraxial and ray approximations of acoustic vortex beams,” J. Acoust. Soc. Am. 155,
2707-2723 (2024).
27p_ L. Marston, “Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 2905-2910
(2008).
28p 1, Marston, “Radiation force of a helicoidal Bessel beam on a sphere,” J. Acoust. Soc. Am. 125, 3539-3547 (2009).
291, Zhang and P. L. Marston, “Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres,” Phys. Rev. E
84, 035601 (2011).
3ON. Jiménez, R. Picd, V. Sanchez-Morcillo, V. Romero-Garcia, L. M. Garcia-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel
beams by spiral diffraction gratings,” Phys. Rev. E 94, 053004 (2016).
3ID. Baresch, J. L. Thomas, and R. Marchiano, “Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical
tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
32\, E. Terzi, S. A. Tsysar, P. V. Yuldashev, M. M. Karzova, and O. A. Sapozhnikov, “Generation of a vortex ultrasonic beam with a phase
plate with an angular dependence of the thickness,” Moscow Univ. Phys. Bull. 72, 61-67 (2017).
3], Li, A. Crivoi, X. Peng, L. Shen, Y. Pu, Z. Fan, and S. A. Cummer, “Three dimensional acoustic tweezers with vortex streaming,” Commun.
Phys. 4, 113 (2021).
3E. A. Zabolotskaya and R. V. Khokhlov, “Quasi-plane waves in the nonlinear acoustics of confined beams,” Sov. Phys. Acoust. 15, 35-40
(1969).
35M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, 4th ed. (Dover Publications, New York, 1972), Item 11.1.1.
36g_G. Williams, Fourier Acoustics (Academic Press, San Diego, 1999), Sec. 2.9.

JASA Express Lett. 4 (12),124001(2024) 4,124001-6


https://doi.org/10.1121/1.428184
https://doi.org/10.1109/TUFFC.2010.1564
https://doi.org/10.1103/PhysRevE.84.065601
https://doi.org/10.1103/PhysRevE.84.065601
https://doi.org/10.1103/PhysRevLett.109.034301
https://doi.org/10.1103/PhysRevLett.109.034301
https://doi.org/10.1063/1.4803078
https://doi.org/10.1063/1.4803078
https://doi.org/10.1088/1367-2630/17/10/103022
https://doi.org/10.1088/1367-2630/17/10/103022
https://doi.org/10.1103/PhysRevLett.114.214301
https://doi.org/10.1063/1.4963185
https://doi.org/10.1126/sciadv.aav1967
https://doi.org/10.1103/PhysRevApplied.12.024045
https://doi.org/10.1073/pnas.1813047115
https://doi.org/10.1121/1.3384406
https://doi.org/10.1121/1.3384406
https://doi.org/10.1121/1.4799523
https://doi.org/10.1073/pnas.1704450114
https://doi.org/10.1073/pnas.1704450114
https://doi.org/10.1002/adma.201800257
https://doi.org/10.1103/PhysRevApplied.13.014014
https://doi.org/10.1088/1361-6463/abe43e
https://doi.org/10.1121/10.0019884
https://doi.org/10.1121/10.0019884
https://doi.org/10.1038/s41592-018-0222-9
https://doi.org/10.1103/PhysRevApplied.14.054070
https://doi.org/10.1016/j.ultrasmedbio.2022.05.021
https://doi.org/10.1016/j.ultrasmedbio.2022.05.021
https://doi.org/10.1038/s41598-021-89487-8
https://doi.org/10.1103/PhysRevE.71.066616
https://doi.org/10.1016/j.ijleo.2021.166320
https://doi.org/10.1121/10.0025688
https://doi.org/10.1121/1.2973230
https://doi.org/10.1121/1.3119625
https://doi.org/10.1103/PhysRevE.84.035601
https://doi.org/10.1103/PhysRevE.94.053004
https://doi.org/10.1103/PhysRevLett.116.024301
https://doi.org/10.3103/S0027134916050180
https://doi.org/10.1038/s42005-021-00617-0
https://doi.org/10.1038/s42005-021-00617-0
https://scitation.org/journal/jel

’:F..?.'.'.’.'Eﬁg__ ARTICLE

377.S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226-2234
(1998).

38M. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Opt. Commun. 121, 36-40 (1995).
391, E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 485-487 (2003).
401, S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Academic Press, New York, 1980), Item 8.471-2.

JASA Express Lett. 4 (12),124001(2024) 4,124001-7


https://doi.org/10.1364/JOSAB.15.002226
https://doi.org/10.1016/0030-4018(95)00455-H
https://doi.org/10.1103/PhysRevLett.90.133901
https://scitation.org/journal/jel

	s1
	s2
	d1
	d2
	l
	n1
	d3
	d4
	d5
	d6
	d7
	d8
	d8a
	d8b
	d8c
	d8d
	d8e
	d9
	d10
	d11
	d12
	s3
	d13
	d14
	d15
	d16
	d17
	s4
	d18
	f1
	d19
	d20
	d21
	s5
	t1
	f2
	s6
	l
	c1
	f3
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40

