Analytical solutions for acoustic vortex beam radiation from planar and spherically focused circular pistons

Chirag A. Gokani Michael R. Haberman Mark F. Hamilton

Applied Research Laboratories & Walker Department of Mechanical Engineering University of Texas at Austin

188th ASA & 25th ICA Meeting New Orleans, Louisiana

The University of Texas at Austin Walker Department of Mechanical Engineering Cockrell School of Engineering

Outline

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Outline

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Our publications on this work

What is an acoustic vortex beam?

Characterized by...

- helical wavefronts
- orbital number ℓ = number of equiphase wavefronts in \perp plane
- zero acoustic pressure on axis

C. Shi et al. *P. Natl. Acad. Sci. U.S.A.* 114 (2017), pp. 7250–7253

B. I. Hefner and P. L. Marston. J. Acoust. Soc. Am. 106 (1999), pp. 3313–3316

TEXAS

What is an acoustic vortex beam?

Used for...

- particle manipulation
- underwater communications
- therapeutic biomedical ultrasound
- sound diffusion

S. Guo et al. Ultrasound Med. Biol. 48 (2022), pp. 1907–1917

TEXAS

N. Jiménez, J. -P. Groby, and V. Romero-García. *Sci. Rep.* 11 (2021), pp. 1–13

What is an acoustic vortex beam?

Generated by...

- phase plates
- transducer arrays
- metasurfaces

M. E. Terzi et al. Moscow University Physics Bulletin 72 (2017), pp. 61–67

A. Marzo, M. Caleap, and B. W. Drinkwater. *Phys. Rev. Lett.* 120 (2018), pp. 1–6

X. Jiang et al. *Phys. Rev. Lett.* 117 (2016), pp. 1–5

Previous analytical descriptions of vortex beams

Bessel vortex beams are modes of the cylindrical wave equation:¹

$$p(r,\theta,z,t) = p_0 J_\ell(k_r r) e^{i(\ell \theta + k_z z - \omega t)}, \quad k = \frac{\omega}{c_0} = \sqrt{k_r^2 + k_z^2}.$$
 (1)

Gaussian vortex beams are generalizations of Gaussian beams:²

$$p(r, \theta, z, t) = \sqrt{8\pi} \left(\frac{p_0 z}{k r^2} \right) \chi^{3/2} e^{-\chi} \left[I_{(\ell-1)/2}(\chi) - I_{(\ell+1)/2}(\chi) \right] \\ \times e^{i \left[\ell \theta - (\ell+1) \pi / 2 + k r^2 / 2 z + k_z z - \omega t \right]},$$
(2)
$$\chi(r, z) = \frac{\frac{1}{8} (kar/z)^2}{1 - i(ka^2 / 2z)(1 - z/d)}.$$

- ▶ Fields described by Eqs. (1) and (2) require infinite source conditions.
- Equation (1) implies infinite energy,³ because $\int_0^\infty |J_\ell(k_r r)|^2 r \, dr \to \infty$.
- Objective: derive solutions for vortex fields radiated by circular pistons

¹N. Jiménez et al. *Phys. Rev. E* 94 (2016), pp. 1–9.

²C. A. Gokani, M. R. Haberman, and M. F. Hamilton. J. Acoust. Soc. Am. 155 (2024), pp. 2707–2723.

³M. R. Lapointe. Opt. Laser Technol. 24 (1992), pp. 315–321.

chiragokani@utexas.edu (ARL:UT)

General Topics in Physical Acoustics: 5pPAa3

Outline

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Paraxial equation and its integral solution

For $p = qe^{i(kz-\omega t)}$ and $|\partial^2 q/\partial z^2| \ll 2k|\partial q/\partial z|$, $\nabla^2 p - c_0^{-2}\ddot{p} = 0$ reduces to

$$i2k\frac{\partial q}{\partial z} + \nabla_{\!\!\perp}^2 q = 0.$$
⁽³⁾

- ∇_{\perp}^2 is the Laplacian in the plane perpendicular to the *z* axis.
- Equation (3) is solved by the Fresnel diffraction integral:

$$q(r,\theta,z) = -\frac{ik}{2\pi z} \int_0^{2\pi} \int_0^{\infty} q(r_0,\theta_0,0) e^{i(k/2z)[r^2 + r_0^2 - 2rr_0\cos(\theta_0 - \theta)]} r_0 dr_0 d\theta_0,$$

where $q(r_0, \theta_0, 0)$ is the prescribed pressure field in the plane z = 0.

Vortex radiation from unfocused circular piston

A circular vortex source condition is first considered:

$$q(r,\theta,0) = p_0 \operatorname{circ}(r/a)e^{i\ell\theta},\tag{4}$$

where $\operatorname{circ}(x) = 1$ for $0 \le x \le 1$ and 0 for x > 1.

Insertion of Eq. (4) in the Fresnel diffraction integral leads to

$$q = -ikp_0 \frac{e^{i(ka^2/2z)r^2/a^2}}{z} e^{i\ell(\theta - \pi/2)} \int_0^a e^{i(ka^2/2z)r_0^2/a^2} J_\ell(krr_0/z) r_0 dr_0.$$
(5)

Using Watson's relation,⁴ Eq. (5) reduces to

$$q = -\frac{ikp_0}{z} e^{i\ell(\theta - \pi/2)} \int_0^a J_\ell(krr_0/z) r_0 dr_0$$
(6)

for $z \gg z_R$, where $z_R = ka^2/2$ is the Rayleigh distance.

⁴G. N. Watson. Cambridge, UK: Cambridge University Press, 1944, Sec. 2.2, Eq. (5). chiragokani@utexas.edu (ARL:UT) General Topics in Physical Acoustics: 5pPAa3

Vortex radiation from unfocused circular piston

► Taking the integral in Eq. (6) leads to an analytical solution:

$$q_{\ell}(r,\theta,z) = -ip_0 \frac{z}{kr^2} e^{i\ell(\theta-\pi/2)} F_{\ell}(kar/z), \quad z \gg z_R,$$
(7)

where⁵

$$F_{\ell}(\xi) = \int_{0}^{\xi} J_{\ell}(t)t \, dt = \xi \, \frac{\Gamma(\ell/2+1)}{\Gamma(\ell/2)} \sum_{k=0}^{\infty} \frac{(\ell+2k+1)\Gamma(\ell/2+k)}{\Gamma(\ell/2+2+k)} J_{\ell+2k+1}(\xi).$$
(8)

Equation (8) equals the following closed-form expressions for $1 \le \ell \le 4$:

$$F_0(\xi) = \xi J_1(\xi) ,$$
 $\ell = 0$ (9a)

$$F_1(\xi) = \frac{\pi}{2} \xi \left[\mathbf{H}_0(\xi) J_1(\xi) - \mathbf{H}_1(\xi) J_0(\xi) \right], \qquad \ell = 1$$
(9b)

$$F_2(\xi) = 2 - 2J_0(\xi) - \xi J_1(\xi), \qquad \qquad \ell = 2 \qquad (9c)$$

$$F_{3}(\xi) = \left[\frac{3\pi}{2}\xi \mathbf{H}_{0}(\xi) - 8\right] J_{1}(\xi) + \left[4\xi - \frac{3\pi}{2}\xi \mathbf{H}_{1}(\xi)\right] J_{0}(\xi), \quad \ell = 3$$
(9d)

$$F_4(\xi) = 4 - 8J_1(\xi)/\xi - 4J_2(\xi) - \xi J_3(\xi) . \qquad \qquad \ell = 4$$
 (9e)

⁵M. Abramowitz and I. A. Stegun, editors. New York: Dover Publications, 1972, Item 11.1.1. chiragokani@utexas.edu (ARL:UT) General Topics in Physical Acoustics: 5pPAa3

Verification of Eq. (7)

The validity of Eq. (7) is assessed by comparison to

TEXAS

Vortex radiation from focused circular piston

To describe spherical focusing at a geometric focal length d, source condition (4) is multiplied by exp(-ikr²/2d):

$$q(r,\theta,0) = p_0 \operatorname{circ}(r/a) e^{i\ell \theta} e^{-ikr^2/2d}, \qquad (11)$$

An analytical solution of Eq. (3) is available at z = d:

$$q_{\ell}(r,\theta,d) = -ip_0 \frac{d}{kr^2} e^{ikr^2/2d} e^{i\ell(\theta-\pi/2)} F_{\ell}(kar/d), \qquad (12)$$

where $F_{\ell}(\xi)$ is given by Eq. (8).

Verification of Eq. (12): analytical, Fourier

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Vortex ring radius

- The magnitudes of vortex beam fields are axisymmetric.
- ▶ In the far field of Eq. (7), the field is conical.
- In the geometric focal plane z = d of Eq. (12), the field forms toroidal ring.
- Equations (7) and (12) can be used to find the radius of these features.

C. Zhou et al. *J. Appl. Phys.* 128 (2020), pp. 1–12

D. Baresch, J. -L. Thomas, and R. Marchiano. *Phys. Rev. Lett.* 116 (2016), pp. 1–6

Vortex ring radius

Maximizing Eqs. (7) and (12) in r amounts to solving

$$\frac{d|\xi^{-1}F_{\ell}(\xi)|}{d\xi} = 0\,,$$

where $\xi = kar/z$ (unfocused) and $\xi = kar/d$ (focused).

• Using Eq. (8) for F_{ℓ} and taking the derivative yields⁶

$$\sum_{k=0}^{\infty} \frac{(\ell+2k+1)\Gamma(\ell/2+k)}{\Gamma(\ell/2+2+k)} \left[\frac{J_{\ell+2k}(\xi) - J_{\ell+2k+2}(\xi)}{2\xi} - \frac{J_{\ell+2k+1}(\xi)}{\xi^2} \right] = 0.$$
(13)

- The roots ξ_{ℓ} of Eq. (13) are fit to a line: $\xi_{\ell} = 1.23\ell + 1.49$.
- Solving $\xi_{\ell} = kar_{\ell}/z$ and $\xi_{\ell} = kar_{\ell}/d$ for r_{ℓ} yields

$$r_{\ell} = \frac{\xi_{\ell} z}{ka}, \quad z \gg z_{R},$$

$$= \frac{\xi_{\ell} d}{ka}, \quad z = d.$$
(14a)
(14b)

⁶I. S. Gradshteyn and I. M. Ryzhik. New York: Academic Press, 1980, Item 8.471-2.

chiragokani@utexas.edu (ARL:UT)

General Topics in Physical Acoustics: 5pPAa3

Vortex ring radius

Comparison of roots ξ_{ℓ} (circles) with least-squares fit $\xi_{\ell} = 1.23\ell + 1.49$ (line)

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Alternative approach to diffraction theory

The Rayleigh integral

$$p(\mathbf{r}) = -\frac{ik\rho_0 c_0}{2\pi} \int_{A_0} u_z(\mathbf{r}_0) \frac{e^{ik|\mathbf{r}-\mathbf{r}_0|}}{|\mathbf{r}-\mathbf{r}_0|} \, dA_0 \tag{15}$$

is the starting-point for the study of diffraction from circular pistons.

- Equation (15) is traditionally derived from the Helmholtz-Kirchhoff integral.⁷
- Consider a piston placed concentrically within a tube of radius b.

⁷A. D. Pierce. Cham, Switzerland: Springer, 2019, Eqs. (5.2.6) and (5.7.3).

General Topics in Physical Acoustics: 5pPAa3

Alternative approach to diffraction theory

The solution of the Helmholtz equation for that scenario is

$$p(r,\theta,z) = \sum_{n=1}^{\infty} A_{\ell n} J_{\ell}(\alpha_{\ell n} r/b) e^{i(\ell \theta + \beta_{\ell n} z)}, \qquad (16a)$$

$$A_{\ell n} = \frac{2k\rho_0 c_0 u_0}{\alpha_{\ell n}^2 \beta_{\ell n}} \frac{F_{\ell}(\alpha_{\ell n} a/b)}{J_{\ell+1}^2(\alpha_{\ell n})}, \quad \beta_{\ell n} = \sqrt{k^2 - k_r^2}, \quad k_r = \alpha_{\ell n}/b, \quad (16b)$$

where $\alpha_{\ell n}$ is the n^{th} root of J_{ℓ} .

 ∞

• The ratio $\alpha_{\ell n}/b$ is vanishingly small except for large *n*, for which⁸

$$\alpha_{\ell n} \approx \pi (n - 1/4 + \ell/2), \quad n \gg 1.$$
 (17)

• Defining $\zeta = \alpha_{\ell n} a/b \approx \frac{a}{b} \pi (n - 1/4 + \ell/2)$ for $n \gg 1$ sets $\Delta \zeta = \pi a/b$:

$$p = \rho_0 c_0 u_0 e^{i\ell\theta} \sum_{n=1}^{\infty} \frac{\Delta \zeta}{\zeta} \frac{F_\ell(\zeta) J_\ell(\zeta r/a)}{\sqrt{1 - (\zeta/ka)^2}} e^{ikz\sqrt{1 - (\zeta/ka)^2}}.$$
 (18)

As $b \to \infty$, Eq. (18) tends to

$$p = \rho_0 c_0 u_0 e^{i\ell\theta} \int_0^\infty \frac{F_\ell(\zeta) J_\ell(\zeta r/a)}{\zeta \sqrt{1 - (\zeta/ka)^2}} e^{ikz\sqrt{1 - (\zeta/ka)^2}} d\zeta.$$
(19)

⁸I. S. Gradshteyn and I. M. Ryzhik. New York: Academic Press, 1980, Eq. (8.547).

chiragokani@utexas.edu (ARL:UT)

General Topics in Physical Acoustics: 5pPAa3

Alternative approach to diffraction theory

Using Watson's relation⁹ and the 2D Fourier transforms

$$\mathcal{F}_{2D}\{f(r,\theta)\} = g(k_r,\psi) = \int_0^{2\pi} \int_0^{\infty} f(r,\theta) e^{-ik_r r \cos(\theta-\psi)} r \, dr \, d\theta \,, \qquad (20a)$$

$$\mathcal{F}_{2D}^{-1}\{g(k_r,\psi)\} = f(r,\theta) = \int_0^{2\pi} \int_0^{\pi} g(k_r,\psi) e^{ik_r r \cos(\theta - \psi)} k_r \, dk_r \, d\psi \,, \tag{20b}$$

Eq. (19) recovers the angular spectrum method,

$$p(r,\theta,z) = \rho_0 c_0 k \mathcal{F}_{2D}^{-1} \{ \mathcal{F}_{2D} \{ u_z(r,\theta) \} e^{ik_z z} / k_z \} .$$
(21)

Noting that $\mathcal{F}_{2D}\{e^{ikr}/r\} = i2\pi e^{ik_z|z|}/k_z$,¹⁰ where $r = \sqrt{x^2 + y^2 + z^2}$, Eq. (21) reduces to

$$p = -\frac{ik\rho_0 c_0}{2\pi} u(x, y) * * \frac{e^{ikr}}{r} .$$
(22)

▶ By the definition of the convolution operation, Eq. (22) recovers Eq. (15).

⁹G. N. Watson. Cambridge, UK: Cambridge University Press, 1944, Sec. 2.2, Eq. (5).
 ¹⁰L. T. Brekhovskikh, translated by R. T. Beyer. Academic Press, 1980, pp. 227–234.
 chiragokanl@utexas.edu (ARL:UT)

Outline

Introduction

Analytical solution of paraxial equation

Vortex ring radius

Alternative approach to diffraction theory

Summary

Thank you for listening!

Summary

- Solved paraxial equation for planar and focused circular vortex sources
- Calculated the ring radius for both solutions
- Derived alternative theory of diffraction from circular pistons

Further reading

- "Paraxial and ray approximations of acoustic vortex beams,"
 J. Acoust. Soc. Am. 155, 2707–2723 (2024).
- "Analytical solutions for acoustic vortex beam radiation from planar and spherically focused circular pistons," JASA Express Lett. 4, 124001 (2024).

Acknowledgments

Chester M. McKinney Graduate Fellowship in Acoustics at the Applied Research Laboratories

Mr. Jackson S. Hallveld chiragokani@utexas.edu (ARL:UT)

Dr. Randall P. Williams

Prof. Michael R. Haberman

Prof. Mark F. Hamilton

General Topics in Physical Acoustics: 5pPAa3

TEXAS

References I

- C. Shi et al. "High-speed acoustic communication by multiplexing orbital angular momentum". *P. Natl. Acad. Sci. U.S.A.* 114 (2017), pp. 7250–7253.
 - B. T. Hefner and P. L. Marston. "An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems".
 - J. Acoust. Soc. Am. 106 (1999), pp. 3313-3316.
- Zhang, L. and P. L. Marston. "Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects". *Phys. Rev. E* 84 (2011), pp. 1–5.
- M. E. Kelly and C. Shi. "Design and simulation of acoustic vortex wave arrays for long-range underwater communication". *JASA Express Lett.* 3 (2023), pp. 1–5.
- - S. Guo et al. "Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex". *Ultrasound Med. Biol.* 48 (2022), pp. 1907–1917.
 - N. Jiménez, J. -P. Groby, and V. Romero-García. "Spiral sound-diffusing metasurfaces based on holographic vortices". Sci. Rep. 11 (2021), pp. 1–13.
- M. E. Terzi et al. "Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness". *Moscow University Physics Bulletin* 72 (2017), pp. 61–67.

References II

A. Marzo, M. Caleap, and B. W. Drinkwater. "Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles".

Phys. Rev. Lett. 120 (2018), pp. 1-6.

- X. Jiang et al. "Convert acoustic resonances to orbital angular momentum". *Phys. Rev. Lett.* 117 (2016), pp. 1–5.
- N. Jiménez et al. "Formation of high-order acoustic Bessel beams by spiral diffraction gratings". *Phys. Rev. E* 94 (2016), pp. 1–9.
- C. A. Gokani, M. R. Haberman, and M. F. Hamilton. "Paraxial and ray approximations of acoustic vortex beams". *J. Acoust. Soc. Am.* 155 (2024), pp. 2707–2723.
- M. R. Lapointe. "Review of non-diffracting Bessel beam experiments". *Opt. Laser Technol.* 24 (1992), pp. 315–321.
- G. N. Watson. *A Treatise on the Theory of Bessel Functions, 2nd edition.* Cambridge, UK: Cambridge University Press, 1944.
- M. Abramowitz and I. A. Stegun, editors. *Handbook of Mathematical Functions, 4th edition.* New York: Dover Publications, 1972.

References III

C. Zhou et al. "Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation". J. Appl. Phys. 128 (2020), pp. 1–12.

- D. Baresch, J. -L. Thomas, and R. Marchiano. "Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers". *Phys. Rev. Lett.* 116 (2016), pp. 1–6.
- I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series, and Products, 4th edition*. New York: Academic Press, 1980.
 - A. D. Pierce. Acoustics, 3rd edition. Cham, Switzerland: Springer, 2019.
 - L. T. Brekhovskikh, translated by R. T. Beyer. *Waves in Layered Media, 2nd edition*. Academic Press, 1980.

Notation I

8	TEXA	S
~	The Outputstance Tenant and	Artis

Symbol	Description	Dimensions
а	source radius	m
c_0	speed of sound	${\sf m}\;{\sf s}^{-1}$
d	focal length	m
G	focusing gain $ka^2/2d$	1
i	complex unit	1
k	wavenumber	m^{-1}
ℓ	orbital number	1
$ ho_0$	ambient mass density	$kg m^{-3}$
р	acoustic pressure	kg m $^{-1}$ s $^{-2}$
q	paraxial pressure	kg m $^{-1}$ s $^{-2}$
R	separation vector $\mathbf{R} = \mathbf{r} - \mathbf{r}'$	m
r	position vector	m
v	particle velocity	${\sf m}\;{\sf s}^{-1}$
z_R	Rayleigh distance, $ka^2/2$	m
ω	angular frequency, $\omega = 2\pi f$	s^{-1}

Dimensionless form of Eq. (19)

In terms of the dimensionless parameters

$$P \equiv p/\rho_0 c_0 u_0, \quad R \equiv r/a, \quad Z \equiv z/z_R, \quad K \equiv ka,$$
(23)

where z_R is the Rayleigh distance $ka^2/2$, and where

$$k_z/k = \sqrt{1 - (\zeta/K)^2}, \quad \zeta \equiv k_r a, \qquad (24)$$

Eq. (19) becomes

$$P = e^{i\ell\theta} \int_0^\infty \frac{F_\ell(\zeta) J_\ell(\zeta R)}{\zeta \sqrt{1 - (\zeta/K)^2}} e^{iK^2 Z \sqrt{1 - (\zeta/K)^2}/2} \, d\zeta \,.$$
(25)

Equation (25) is equivalent to and easier to evaluate than Eq. (21).

On-axis pressure of baffled circular piston

Equation (25) can be evaluated analytically for $R = \ell = 0$:

$$P(Z) = \int_0^\infty \frac{J_1(\zeta)}{\sqrt{1 - (\zeta/K)^2}} e^{iK^2 Z \sqrt{1 - (\zeta/K)^2}/2} d\zeta .$$
(26)

Equation (26) evaluates to¹¹

$$P(Z) = -iK I_{1/2}[-i\chi_{-}(Z)] K_{1/2}[-i\chi_{+}(Z)], \qquad (27)$$

where I_{ν} and K_{ν} are the modified Bessel functions of order ν , and where

$$\chi_{\pm}(Z) = \frac{K}{2} \left[\sqrt{1 + (KZ/2)^2} \pm KZ/2 \right].$$
(28)

Bessel function identities reduce Eq. (27) to

$$P(Z) = -2i\sin[\chi_{-}(Z)]e^{i\chi_{+}(Z)},$$
(29)

recovering the on-axis pressure radiated by a planar circular piston.¹²

¹¹I. S. Gradshteyn and I. M. Ryzhik. New York: Academic Press, 1980, Item 6.637-1.
 ¹²A. D. Pierce. Cham. Switzerland: Springer, 2019, Eq. (5.7.3).

chiragokani@utexas.edu (ARL:UT)

General Topics in Physical Acoustics: 5pPAa3

Equation (25) for $\ell = 0$: semi-analytical, Fourier

TEXAS

Equation (25) for $\ell = 1$: semi-analytical, Fourier

TEXAS