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Lindsay’s wheel of acoustics
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What is sound?
∂ρ

∂t +∇ · (ρu) = 0

ρ
∂u
∂t + (ρu ·∇)u +∇P = (λ+ 2µ)∇(∇ · u)− µ∇×∇× u

ρCv
DT
Dt + P∇ · u = Φ(visc) + κ∇2T

P = P(ρ, s)

▶ A wave equation that accounts for diffraction, losses, and nonlinearity is

□2p +
δ

c4
0

∂3p
∂t3 +

β

ρ0c4
0

∂2p2

∂t2 = 0 . (Westervelt, 1963)

▶ A simpler description of sound is the linear pressure wave equation:

∇2p − 1
c2

0

∂2p
∂t2 = 0 . (1)
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What is an acoustic vortex beam?

Characterized by…
▶ helical wavefronts
▶ orbital number ℓ = number of equiphase wavefronts in ⊥ plane
▶ zero acoustic pressure on axis

C. Shi et al. 2017,
P. Natl. Acad. Sci. U.S.A.

B. T. Hefner and P. L. Marston
1999, J. Acoust. Soc. Am.

6 / 44



What is an acoustic vortex beam?

Generated by…
▶ phase plates
▶ transducer arrays
▶ metasurfaces

M. E. Terzi et al. 2017, Moscow
University Physics Bulletin

A. Marzo, M. Caleap, and
B. W. Drinkwater 2018,

Phys. Rev. Lett.
X. Jiang et al. 2016,

Phys. Rev. Lett.
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What is an acoustic vortex beam?

Used for…
▶ particle manipulation
▶ underwater communications
▶ therapeutic biomedical ultrasound
▶ sound diffusion1

Zhang and Marston 2011,
Phys. Rev. E M. E. Kelly and C. Shi 2023,

JASA Express Lett.
S. Guo et al. 2022, Ultrasound

Med. Biol.

1N. Jiménez, J. -P. Groby, and V. Romero-García 2021, Sci. Rep.
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Paraxial equation and its integral solution

▶ For p = qei(kz−ωt) and |∂2q/∂z2| ≪ 2k|∂q/∂z|, Eq. (1) becomes

i2k∂q
∂z +∇2

⊥q = 0 . (2)

▶ ∇2
⊥ is the Laplacian in the plane perpendicular to the z axis.

▶ Equation (2) is solved by the Fresnel diffraction integral:

q(r, θ, z) = − ik
2πz

∫ 2π

0

∫ ∞

0
q(r0, θ0, 0)ei(k/2z)[r2+r2

0−2rr0 cos(θ0−θ)] r0dr0dθ0 ,

where q(r0, θ0, 0) is the prescribed pressure field in the plane z = 0.
▶ A Gaussian focused vortex source condition is considered:

q(r, θ, 0) = p0e−r2/a2
e−ikr2/2deiℓθ . (3)
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Closed-form solution for Gaussian vortex source
▶ The solution of Eq. (2) for Eq. (3) is

q(r, θ, z) =
√

8π p0z
kr2 χ

3/2e−χ
[
I(ℓ−1)/2(χ)− I(ℓ+1)/2(χ)

]
× ei[ℓθ−(ℓ+1)π/2+kr2/2z] ,

χ(r, z) =
1
8 (kar/z)2

1 − i(ka2/2z)(1 − z/d) .

(4)

(5)

▶ For ℓ = 0, a focused Gaussian beam2 is recovered, where G = ka2/2d:

q(r, z) = p0
1 − (1 − iG−1)z/d exp

[
− (1 + iG)r2/a2

1 − (1 − iG−1)z/d

]
, ℓ = 0 . (6)

▶ For an unfocused source (d = ∞) with no vorticity (ℓ = 0), Eq. (4) reduces
to

q(r, z) = p0
1 + iz/zR

exp

(
− r2/a2

1 + iz/zR

)
, zR = ka2/2 . (7)

2“Nonlinear Acoustics,” M. F. Hamilton and D. T. Blackstock, 2008. Eqs. (8.19) and (8.37).
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An equivalent solution: Laguerre-Gaussian modes
▶ The eigenfunctions of Eq. (2) are

LGnm(r, θ, z) = Nm
n

w(z)

(√
2r

w(z)

)|m|

L|m|
n

(
2r2

w2(z)

)
exp

(
− r2

w2(z)

)
× exp

{
i
[
mθ + kr2

2R(z) − (2n + |m|+ 1)ϕ(z)
]}

, (8)

where Lm
n are the Laguerre polynomials.

▶ The following quantities are defined with respect to zw = kw2
0/2:

w(z) = w0
√

1 + (z/zw)2 , R(z) = z[1 + (zw/z)2] , ϕ(z) = arctan(z/zw) ,

▶ Nm
n = {2n!/[π(n + |m|)!]}1/2 is a normalization factor such that∫ 2π

0

∫ ∞

0
LGnm(r, θ, z)LG∗

n′m′(r, θ, z) r drdθ = δnn′δmm′ . (9)
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An equivalent solution: Laguerre-Gaussian modes
▶ The general solution of Eq. (2) is

q(r, θ, z) =
∑
n,m

Am
n LGnm(r, θ, z) (10)

▶ Matching the boundary condition and invoking orthogonality yields

q(r, θ, z) = p0eiθ r/a
|ζ(z)|2 exp

(
−r2/a2

ζ(z)

)
×
√
π/2

∞∑
n=0

(2n)! e−i(2n+2)ϕR(z)

4n(n + 1)(n!)2 L1
n

(
2r2/a2

|ζ(z)|2

)
, ℓ = 1 , (11a)

q(r, θ, z) = p0ei2θ r2/a2

|ζ(z)|3 exp

(
−r2/a2

ζ(z)

)
× 2

∞∑
n=0

e−i(2n+3)ϕR(z)

(n + 1)(n + 2)L2
n

(
2r2/a2

|ζ(z)|2

)
, ℓ = 2 , (11b)

where ζ(z) = 1 + iz/zR, ϕR(z) = arctan(z/zR), and zR = ka2/2.
▶ ∼10 and 20 terms of Eqs. (11a) and (11b) are required for convergence.

13 / 44



Vortex ring radius

▶ Focused beams used for particle manipulation
▶ Magnitudes of vortex beam fields are axisymmetric
▶ In geometric focal plane z = d, field forms toroidal ring
▶ Analytical solution (4) can be used to find the radius of this ring

D. Baresch, J. -L. Thomas, and
R. Marchiano 2016,

Phys. Rev. Lett.

C. Zhou et al. 2020,
J. Appl. Phys.

M. E. Terzi et al. 2017, Moscow University
Physics Bulletin
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Vortex ring radius
▶ The vortex ring radius is found by setting ∂|q|/∂r = 0.
▶ For real χ, ∂|q|/∂r = 0 equals

d
dχ

{
χ1/2e−χ

[
I(ℓ−1)/2(χ)− I(ℓ+1)/2(χ)

]}
= 0 . (12)

▶ Evaluating Eq. (12) and finding the roots numerically yields the ring radii,

rℓ = ηℓd/ka , z = d ,
= ηℓz/ka , d = ∞ , z ≫ zR ,

(13)
(14)

where ηℓ = 0.9405ℓ+ 0.7518.
η
ℓ

ℓ
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Vortex radiation from unfocused circular piston
▶ Gaussian amplitude distributions accurately describe laser sources.3
▶ But acoustic sources are more commonly described by

q(r, θ, 0) = p0 circ(r/a) eiℓθ , (15)

where circ(x) = 1 for 0 ≤ x ≤ 1 and 0 for x > 1.
▶ Insertion in the Fresnel diffraction integral leads to

q = −ikp0
ei(ka2/2z)r2/a2

z eiℓ(θ−π/2)
∫ a

0
ei(ka2/2z)r2

0/a2
Jℓ(krr0/z) r0dr0 . (16)

▶ Equation (16) reduces to

q = −ikp0
1
z eiℓ(θ−π/2)

∫ a

0
Jℓ(krr0/z) r0dr0 (17)

for z ≫ zR, where zR = ka2/2 is the Rayleigh distance.

3V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev 2018.
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Vortex radiation from unfocused circular piston
▶ Taking the integral leads to an analytical solution:

qℓ(r, θ, z) = −ip0
z

kr2 eiℓ(θ−π/2)Fℓ(kar/z) , z ≫ zR , (18)

where4

Fℓ(ξ) =
∫ ξ

0
Jℓ(t)t dt = ξ

Γ(ℓ/2 + 1)
Γ(ℓ/2)

∞∑
k=0

(ℓ+ 2k + 1)Γ(ℓ/2 + k)
Γ(ℓ/2 + 2 + k) Jℓ+2k+1(ξ) .

(19)

▶ Equation (19) equals the following closed-form expressions for 1 ≤ ℓ ≤ 4:

F1(ξ) =
π
2 ξ [H0(ξ)J1(ξ)− H1(ξ)J0(ξ)] , ℓ = 1 (20a)

F2(ξ) = 2 − 2J0(ξ)− ξJ1(ξ) , ℓ = 2 (20b)
F3(ξ) =

[ 3π
2 ξH0(ξ)− 8

]
J1(ξ) +

[
4ξ − 3π

2 ξH1(ξ)
]

J0(ξ) , ℓ = 3 (20c)
F4(ξ) = 4 − 8J1(ξ)/ξ − 4J2(ξ)− ξJ3(ξ) , ℓ = 4 (20d)

4M. Abramowitz and I. A. Stegun, editors 1972.
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Verification of Eq. (18)
▶ The validity of Eq. (18) is assessed by comparison to

q(x, y, z) = F−1
xy
{

eikzzFxy[q(x, y, 0)]
}
, kz = k −

k2
x + k2

y
2k . (21)
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Vortex radiation from focused circular piston
▶ To describe spherical focusing at a geometric focal length d, source

condition (15) is multiplied by exp(−ikr2/2d):

q(r, θ, 0) = p0 circ(r/a) eiℓθe−ikr2/2d , (22)

▶ An analytical solution of Eq. (2) is available in the focal plane z = d:

qℓ(r, θ, d) = −ip0
d

kr2 eikr2/2deiℓ(θ−π/2)Fℓ(kar/d) , (23)

where Fℓ(ξ) is given by Eq. (19).

z
d

Source
plane

q(r, θ, 0) = p0 circ(r/a) eiℓθe−ikr2/2d

a

λ = 2π/k
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Vortex ring radius
▶ Extremizing the solutions in r amounts to solving

d|ξ−1Fℓ(ξ)|
dξ = 0 ,

where ξ = kar/z (unfocused) and ξ = kar/d (focused).
▶ Using Eq. (19) for Fℓ and taking the derivative yields5

∞∑
k=0

(ℓ+ 2k + 1)Γ(ℓ/2 + k)
Γ(ℓ/2 + 2 + k)

[
Jℓ+2k(ξ)− Jℓ+2k+2(ξ)

2ξ − Jℓ+2k+1(ξ)

ξ2

]
= 0 . (24)

▶ The roots ξℓ of Eq. (24) are fit to a line:
ξℓ = 1.23ℓ+ 1.49 . (25)

▶ Solving ξℓ = karℓ/z and ξℓ = karℓ/d for rℓ yields

rℓ =
ξℓz
ka , z ≫ zR ,

=
ξℓd
ka , z = d .

(26a)

(26b)

5I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. Item
8.471-2.
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A simplified diffraction integral
▶ The angular spectrum method is equivalent to the first Rayleigh integral:

p(r, θ, z) = ρ0c0kF−1
2D {F2D{uz(r, θ)}eikzz/kz} , (27)

where

{F2D{f(r, θ)} = f̂(kr, ψ) =

∫ ∞

0

∫ 2π

0
f(r, θ)e−ikrr cos(θ−ψ)r dr dθ , (28a)

F−1
2D {̂f(kr, ψ)} = f(r, θ) =

∫ ∞

0

∫ 2π

0
f̂(kr, ψ)eikrr cos(θ−ψ)kr dkr dψ . (28b)

▶ In light of Fℓ and Watson’s relation6

Jn(β) =
1

2π

∫ 2π+α

α

ei(nϕ−β sinϕ)dϕ , (29)

Eq. (27) reduces to

p/ρ0c0u0 = eiℓθ
∫ ∞

0
(k/kz)Fℓ(kra)Jℓ(krr)eikzzdkr/kr . (30)

6G. N. Watson 1944.
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A simplified diffraction integral
▶ In terms of the dimensionless parameters

P ≡ p/ρ0c0u0 , R ≡ r/a , Z ≡ z/zR , K ≡ ka , (31)

where zR is the Rayleigh distance ka2/2, and where

kz/k =
√

1 − (ζ/K)2 , ζ ≡ kra , (32)

Eq. (30) becomes

P = eiℓθ
∫ ∞

0

Fℓ(ζ)Jℓ(ζR)

ζ
√

1 − (ζ/K)2
eiK2Z

√
1−(ζ/K)2/2 dζ . (33)

▶ Equation (33) is equivalent to the Rayleigh integral.

Mr. Jackson S. Hallveld Dr. Randall P. Williams
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Prefocal shadow zone
▶ Magnitude of solution of Eq. (2) for focused Gaussian vortex source is

|q(r, z)| =
√

8π p0z
kr2

∣∣∣χ3/2e−χ
[
I(ℓ−1)/2(χ)− I(ℓ+1)/2(χ)

]∣∣∣ , (34)

χ(r, z) =
1
8 (kar/z)2

1 − i(ka2/2z)(1 − z/d)

▶ For moderate values of focusing gain G, Eq. (34) reveals movement of
vortex ring out of focal plane z = d as ℓ increases

G
=

10
G

=
20

ℓ = 1 ℓ = 3 ℓ = 5 ℓ = 7 ℓ = 10

x/
a

x/
a

z/d z/d z/d z/d z/d

Focal plane
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Focused vortex source condition
▶ To explain this behavior with increasing ℓ, appeal to ray theory: ka → ∞
▶ In homogeneous media, rays travel in straight lines
▶ In the vicinity of source, pressure field is

p(r, θ, z) ≃ p0 f(r)eiϕ , z ≃ 0

where f(r) = axisymmetric amplitude distribution in source plane
▶ Phase accounts for focusing, helical wavefronts, and traveling wave motion:

ϕ(r, θ, z) = −kr2/2d + ℓθ + kz

Sunbeams

z
d

Source
plane

p(r, θ, z) ≃ p0f(r)eiϕ

a

λ = 2π/k
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Wave normal n and annular channel radius ∆

▶ Wave normal in source plane at distance r0 from origin is

n =
∇ϕ

|∇ϕ|
=

−(r0/d) er + (ℓ/kr0) eθ + ez√
(r0/d)2 + (ℓ/kr0)2 + 1

▶ Radius of circle formed by family of rays emanating from r = r0 in source
plane is

∆(r0, z) = r0
[
(1 − z/d)2 + (ℓd/kr2

0)
2(z/d)2]1/2

z/d

∆
/
r 0

ℓ = 0

ℓ = 5

ez

nch
ψ

∆ for d/kr2
0 = 0.1

z
d

r0 ∆

n = ∇ϕ/|∇ϕ|
Source plane

Adapted from G. Richard et al. 2020, New
J. Phys.
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Examples of hyperboloids in architecture

(a) (b) (c)

(a) Water tower in Ciechanów, Poland.7 (b) The Corporation Street Bridge in
Manchester, England.8 (c) The Essarts-le-Roi water tower, France.9

7Photograph by Henry Salomé, 2006, distributed under a CC-BY 3.0 license.
8Photograph by Kaczorgw, 2006, distributed under a CC-BY 3.0 license.
9Photograph by Gerald England, 1999, distributed under a CC-BY 2.0 license.
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Pressure field according to ray theory
▶ Pressure field predicted by ray theory:

P(∆, z) = p0 f(r0)
√

A(r0, 0)/A(r0, z) (35)

▶ Area of annular ray channel is

A(r0, z) = Az(r0, z) cosψ(r0, z) = 2πw∆(r0, z)|∂∆/∂r0|√
1 + (∂∆/∂z)2

(36)

▶ Inserting Eq. (36) into Eq. (35) and calculating ∂∆/∂r0 and ∂∆/∂z yields

P(∆, z) = p0 f(r0)

[
cosψ(r0, 0)/ cosψ(r0, z)∣∣(1 − z/d)2 − (ℓd/kr2

0)
2(z/d)2

∣∣
]1/2

r0 ∆(r0, z)

w

Az(r0, 0) Az(r0, z)

zd
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Ray pressure field P(∆, z) for f(r) = e−r2/a2

z/d z/d z/d z/d z/d z/d

r/
a

r/
a

G
=

10
G

=
20

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5ℓ = 4

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5ℓ = 4

Color plots for the ray field P(∆, z) due to a focused Gaussian vortex source.
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Caustics
▶ Caustics occur when cross-sectional area vanishes, i.e.,

Az(r0, z) = 2πr0w
∣∣(1 − z/d)2 − (ℓd/kr2

0)
2(z/d)2∣∣ = 0 (37)

▶ Substitution of roots of Eq. (37) into ∆(r0, z) gives caustic coordinates:

∆c(z) =
√
(2ℓd/k)(z/d)|1 − z/d| (38)

▶ Squaring Eq. (38), notating G = ka2/2d, and identifying
∆2

c = x2
c + y2

c , a2
c = ℓa2/4G , c2

c = d2/4

reveals that prefocal caustic is a spheroid of volume Vc = 1
6ℓλd2:

x2
c + y2

c
a2

c
+

(zc − d/2)2

c2
c

= 1 , 0 ≤ zc ≤ d

G = 10
ℓ = 5

z/d

x/
a

zd
Source
plane ac

cc

Prolate for (d/a)2G > ℓ

zdac

cc

Oblate for (d/a)2G < ℓ
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Paraxial field q(r, z), ray paths ∆, and caustics ∆c
G

=
10

G
=

20

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5
r/

a

z/d z/d z/d z/d z/d

G
=

20
r/

a
r/

a

ℓ = 4

z/d

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5ℓ = 4

ℓ = 0 ℓ = 2 ℓ = 4 ℓ = 6 ℓ = 10ℓ = 8

Overlays of caustics ∆c (thick lines) and ray channels ∆ (thin lines) on color plots of
the amplitude of the paraxial field |q(r, z)| due to a focused Gaussian vortex source.
Rays emanating from r > a have been suppressed for visual clarity.

32 / 44



q(r, z), ∆, and ∆c for f(r) = circ(r/a)
G

=
10

G
=

20

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5

r/
a

z/d z/d z/d z/d z/d

G
=

20
r/

a
r/

a

ℓ = 4

z/d

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5ℓ = 4

ℓ = 0 ℓ = 2 ℓ = 4 ℓ = 6 ℓ = 10ℓ = 8

Overlays of caustics ∆c (thick lines) and ray channels ∆ (thin lines) on color plots of
the amplitude of the paraxial field |q(r, z)| due to a uniform focused vortex source.
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Unfocused limit, d → ∞
▶ For unfocused vortex beams, d → ∞, for which ∆, ∆c, and P reduce to

∆(r0, z) = r0[1 + (ℓz/kr2
0)

2]1/2 , ray channel radius
∆c(z) =

√
2ℓz/k , caustic radius

P(∆, z) = p0f(r0)

[
cosψ(r0, 0)/cosψ(r0, z)∣∣1 − (ℓz/kr2

0)
2
∣∣

]1/2

▶ Caustic surface is a paraboloid, where zR = ka2/2:

z
zR

=
x2

c + y2
c

ℓa2 , z ≥ 0

z/zR z/zR z/zR z/zR

r/
a

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 4

zzR

Source
plane

a
√
ℓ
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Unfocused limit, d → ∞, f(r) = circ(r/a)

z/zR z/zR z/zR z/zR

r/
a

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 4

Overlays of caustics ∆c (thick lines) and ray channels ∆ (thin lines) on color plots of
the amplitude of the paraxial field |q(r, z)| due to a uniform unfocused vortex source.
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Further reading
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Motivation to study nonlinear problem

Hypothesis:
▶ Wavefronts travels farther than they would in the absence of vorticity.
▶ The phase evolves more rapidly in z direction due to the extra path length.
▶ Cumulative nonlinear effects in z direction occur over a shortened length

scale.
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Geometry of Bessel vortex beam
▶ The Bessel vortex beam is simply a cylindrical eigenfunction of the

Helmholtz equation:
p(r, θ, z) = p0Jℓ(krr)ei(kzz+ℓθ) . (39)

▶ The surface of constant phase is Φ(z, θ) = kzz + ℓθ.
▶ The wave normal is

n =
∇Φ

|∇Φ|
=

kzrez + ℓeθ√
(kzr)2 + ℓ2

. (40)

▶ The angle with respect to the z axis is tanϕ = ℓ/kzr.
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Attempted reduction to 1D
▶ Over the coordinate s = z/ cosϕ, the Burgers equation is

∂p
∂s − δ

2c2
0

∂2p
∂τ2 =

βp
ρ0c3

0

∂p
∂τ

. (41)

▶ The reduced shock-formation distance is

z̄ = cosϕ

βkϵ(r) =
kzr√

(kzr)2 + ℓ2
1

βkϵ(r) . (42)

▶ The Fubini solution over normalized coordinate σ = s/z̄ is

p(σ, θ) = p0

∞∑
n=1

2
nσJn(nσ) sin nωτ

= p0

∞∑
n=1

Bn(σ) sin nωτ ,

B1 = 1 +O(σ2)

B2 = 1
2σ +O(σ3)

B3 = 3
8σ

2 +O(σ4)

B4 = 1
3σ

3 +O(σ5) .
40 / 44



Numerical solution of Westervelt equation
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Numerical solution for Bessel vortex beam
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Thank you for listening!
Summary
▶ Solved Eq. (2) for Gaussian and uniform vortex sources
▶ Calculated scaling laws for both solutions
▶ Derived simplified integral solution of Helmholtz equation for pistons
▶ Developed ray theory to explain behavior of field with increasing ℓ
▶ Showed that shadow zone in prefocal region is a spheroid
▶ Calculated pressure field from ray theory
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Notation I

Symbol Description Dimensions
a source radius m
c0 linear speed of sound m s−1

d focal length m
G focusing gain 1
i complex unit 1
k wavenumber m−1

ℓ orbital number 1
ρ0 ambient mass density kg m−3

p acoustic pressure kg m−1 s−2

q paraxial pressure kg m−1 s−2

R separation vector R = r − r′ m
r position vector m
v particle velocity m s−1

ω angular frequency, ω = 2πf s−1

∗ complex conjugation
· inner product
: double inner product
× cross product
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Notation II

⊗ outer product
∇ gradient m−1

∇· divergence m−1

∇× curl m−1

∇2 Laplacian m−2

∇2 vector Laplacian m−2

⟨f(x)⟩ average of f over quantity x, 1
x
∫

f(x)dx units of f∮
∂Ω

dA integral over closed surface m2∫
Ω

dV integral over volume m3
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The big picture10

b → 0

Nonrelativistic classical

Paraxial rays

Relativistic classical

Exact rays

Nonrelativistic quantum

Paraxial waves

Relativistic quantum

Exact waves

ℏ → 0

b → 0

ℏ → 0

v/c ≪ 1

x′i ≪ 1

⟨xi⟩′ ≪ 1

˙⟨xi⟩/c ≪ 1

H = p2

2m + V

H = p⊥
2

2n0
− n H = −

√
n2 − p2

⊥

H=− ℏ2

2m∇2+ V

H = − b2

2n0
∇2

⊥ − n H2 = b∇2
⊥ + n2

H2 = −ℏ2c2∇2 + m2c4

H=
√

p2c2 + m2c4 +V

10D. Marcuse 1982.
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Pressure field from ray theory
▶ Inserting p(x) = P(x, ω)eiωτ(x) into ∇2p + k2p = 0 yields11

∇2P + iω[2∇P ·∇τ + P∇2τ ]− ω2P[(∇τ)2 − c−2] = 0 . (8.5.1)

▶ In limit that ω → ∞, it is necessary for (∇τ)2 = c−2 and

∇ · (P2∇τ) = 0 (8.5.3b)

▶ Areas A(x0) and A(x) define the end caps of a ray tube

A(x0)

A(x)

x0

xray tube
rays

V,S

▶ Integrating Eq. (8.5.3b) over V and applying Gauss’s theorem yields∮
S
(P2∇τ) · n dS = 0 =⇒ P(x) = P(x0)

√
A(x0)/A(x) .

11Equation numbers refer to those in Acoustics, A. D. Pierce 2019.
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