Paraxial and ray approximations of acoustic vortex beams

Chirag A. Gokani Michael R. Haberman Mark F. Hamilton

Applied Research Laboratories & Walker Department of Mechanical Engineering University of Texas at Austin

CLND Group Meeting, September 25th, 2024

The University of Texas at Austin Walker Department of Mechanical Engineering Cockrell School of Engineering

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

What is sound?

$$\begin{split} \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{u}) &= 0\\ \rho \frac{\partial \mathbf{u}}{\partial t} + (\rho \mathbf{u} \cdot \boldsymbol{\nabla}) \mathbf{u} + \boldsymbol{\nabla} P &= (\lambda + 2\mu) \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{u}) - \mu \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{u}\\ \rho C_v \frac{DT}{Dt} + P \boldsymbol{\nabla} \cdot \mathbf{u} &= \Phi^{(\text{visc})} + \kappa \nabla^2 T\\ P &= P(\rho, s) \end{split}$$

► A wave equation that accounts for diffraction, losses, and nonlinearity is

$$\Box^2 p + \frac{\delta}{c_0^4} \frac{\partial^3 p}{\partial t^3} + \frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2} = 0.$$
 (Westervelt, 1963)

► A simpler description of sound is the linear pressure wave equation:

$$\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = 0.$$
 (1)

What is an acoustic vortex beam?

Characterized by...

- helical wavefronts
- ▶ orbital number ℓ = number of equiphase wavefronts in \perp plane
- zero acoustic pressure on axis

C. Shi et al. 2017, P. Natl. Acad. Sci. U.S.A.

B. T. Hefner and P. L. Marston 1999, J. Acoust. Soc. Am.

What is an acoustic vortex beam?

Generated by...

- phase plates
- transducer arrays
- metasurfaces

M. E. Terzi et al. 2017, Moscow University Physics Bulletin

A. Marzo, M. Caleap, and B. W. Drinkwater 2018, *Phys. Rev. Lett.*

X. Jiang et al. 2016, Phys. Rev. Lett.

What is an acoustic vortex beam?

Used for...

- particle manipulation
- underwater communications
- therapeutic biomedical ultrasound
- sound diffusion¹

5. Guo et al. 2022, Ultrasound Med. Biol.

¹N. Jiménez, J. -P. Groby, and V. Romero-García 2021, Sci. Rep.

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

Paraxial equation and its integral solution

• For
$$p = qe^{i(kz-\omega t)}$$
 and $|\partial^2 q/\partial z^2| \ll 2k|\partial q/\partial z|$, Eq. (1) becomes
 $i2k\frac{\partial q}{\partial z} + \nabla_{\!\!\perp}^2 q = 0$.

- ▶ $\nabla_{\!\perp}^2$ is the Laplacian in the plane perpendicular to the *z* axis.
- Equation (2) is solved by the Fresnel diffraction integral:

$$q(r,\theta,z) = -\frac{ik}{2\pi z} \int_0^{2\pi} \int_0^\infty q(r_0,\theta_0,0) e^{i(k/2z)[r^2 + r_0^2 - 2rr_0\cos(\theta_0 - \theta)]} r_0 dr_0 d\theta_0,$$

where $q(r_0, \theta_0, 0)$ is the prescribed pressure field in the plane z = 0. A Gaussian focused vortex source condition is considered:

$$q(r,\theta,0) = p_0 e^{-r^2/a^2} e^{-ikr^2/2d} e^{i\ell\theta} \,. \tag{3}$$

(2)

Closed-form solution for Gaussian vortex source

▶ The solution of Eq. (2) for Eq. (3) is

$$q(r, \theta, z) = \sqrt{8\pi} \frac{p_0 z}{k r^2} \chi^{3/2} e^{-\chi} \left[I_{(\ell-1)/2}(\chi) - I_{(\ell+1)/2}(\chi) \right] \\ \times e^{i[\ell \theta - (\ell+1)\pi/2 + k r^2/2z]},$$
(4)
$$\chi(r, z) = \frac{\frac{1}{8} (kar/z)^2}{1 - i(ka^2/2z)(1 - z/d)}.$$
(5)

For $\ell = 0$, a focused Gaussian beam² is recovered, where $G = ka^2/2d$:

$$q(r,z) = \frac{p_0}{1 - (1 - iG^{-1})z/d} \exp\left[-\frac{(1 + iG)r^2/a^2}{1 - (1 - iG^{-1})z/d}\right], \quad \ell = 0.$$
(6)

For an unfocused source $(d = \infty)$ with no vorticity $(\ell = 0)$, Eq. (4) reduces to

$$q(r,z) = \frac{p_0}{1 + iz/z_R} \exp\left(-\frac{r^2/a^2}{1 + iz/z_R}\right), \quad z_R = ka^2/2.$$
(7)

²"Nonlinear Acoustics," M. F. Hamilton and D. T. Blackstock, 2008. Eqs. (8.19) and (8.37).

11/44

An equivalent solution: Laguerre-Gaussian modes

▶ The eigenfunctions of Eq. (2) are

$$LG_{nm}(r,\theta,z) = \frac{N_n^m}{w(z)} \left(\frac{\sqrt{2}r}{w(z)}\right)^{|m|} L_n^{|m|} \left(\frac{2r^2}{w^2(z)}\right) \exp\left(-\frac{r^2}{w^2(z)}\right) \\ \times \exp\left\{i\left[m\theta + \frac{kr^2}{2R(z)} - (2n+|m|+1)\phi(z)\right]\right\},$$
(8)

where L_n^m are the Laguerre polynomials.

• The following quantities are defined with respect to $z_w = kw_0^2/2$:

$$w(z) = w_0 \sqrt{1 + (z/z_w)^2}$$
, $R(z) = z[1 + (z_w/z)^2]$, $\phi(z) = \arctan(z/z_w)$,

▶ $N_n^m = \{2n!/[\pi(n+|m|)!]\}^{1/2}$ is a normalization factor such that

$$\int_{0}^{2\pi} \int_{0}^{\infty} \mathrm{LG}_{nm}(r,\theta,z) \mathrm{LG}_{n'm'}^{*}(r,\theta,z) \, r \, dr d\theta = \delta_{nn'} \delta_{mm'} \,. \tag{9}$$

An equivalent solution: Laguerre-Gaussian modes

► The general solution of Eq. (2) is

$$q(r,\theta,z) = \sum_{n,m} A_n^m \mathrm{LG}_{nm}(r,\theta,z)$$
(10)

Matching the boundary condition and invoking orthogonality yields

$$\begin{split} q(r,\theta,z) &= p_0 e^{i\theta} \frac{r/a}{|\zeta(z)|^2} \exp\left(-\frac{r^2/a^2}{\zeta(z)}\right) \\ &\times \sqrt{\pi/2} \sum_{n=0}^{\infty} \frac{(2n)! \ e^{-i(2n+2)\phi_R(z)}}{4^n (n+1)(n!)^2} L_n^1\left(\frac{2r^2/a^2}{|\zeta(z)|^2}\right) , \quad \ell = 1 \,, \quad \text{(11a)} \\ q(r,\theta,z) &= p_0 e^{i2\theta} \frac{r^2/a^2}{|\zeta(z)|^3} \exp\left(-\frac{r^2/a^2}{\zeta(z)}\right) \\ &\times 2 \sum_{n=0}^{\infty} \frac{e^{-i(2n+3)\phi_R(z)}}{(n+1)(n+2)} L_n^2\left(\frac{2r^2/a^2}{|\zeta(z)|^2}\right) \,, \quad \ell = 2 \,, \quad \text{(11b)} \end{split}$$

where $\zeta(z) = 1 + iz/z_R$, $\phi_R(z) = \arctan(z/z_R)$, and $z_R = ka^2/2$. ~ 10 and 20 terms of Eqs. (11a) and (11b) are required for convergence.

Vortex ring radius

- Focused beams used for particle manipulation
- Magnitudes of vortex beam fields are axisymmetric
- In geometric focal plane z = d, field forms toroidal ring
- Analytical solution (4) can be used to find the radius of this ring

D. Baresch, J. -L. Thomas, and R. Marchiano 2016, *Phys. Rev. Lett.*

C. Zhou et al. 2020, J. Appl. Phys.

M. E. Terzi et al. 2017, Moscow University Physics Bulletin

Vortex ring radius

- The vortex ring radius is found by setting $\partial |q|/\partial r = 0$.
- For real χ , $\partial |q| / \partial r = 0$ equals

$$\frac{d}{d\chi} \left\{ \chi^{1/2} e^{-\chi} \left[I_{(\ell-1)/2}(\chi) - I_{(\ell+1)/2}(\chi) \right] \right\} = 0.$$
 (12)

Evaluating Eq. (12) and finding the roots numerically yields the ring radii,

$$r_{\ell} = \eta_{\ell} d/ka, \quad z = d, \tag{13}$$
$$= \eta_{\ell} z/ka, \quad d = \infty, \quad z \gg z_{R}. \tag{14}$$

where $\eta_{\ell} = 0.9405\ell + 0.7518$.

Vortex radiation from unfocused circular piston

- Gaussian amplitude distributions accurately describe laser sources.³
- But acoustic sources are more commonly described by

$$q(r,\theta,0) = p_0 \operatorname{circ}(r/a) e^{i\ell\theta}, \qquad (15)$$

where $\operatorname{circ}(x) = 1$ for $0 \le x \le 1$ and 0 for x > 1.

Insertion in the Fresnel diffraction integral leads to

$$q = -ikp_0 \frac{e^{i(ka^2/2z)r^2/a^2}}{z} e^{i\ell(\theta - \pi/2)} \int_0^a e^{i(ka^2/2z)r_0^2/a^2} J_\ell(krr_0/z) r_0 dr_0.$$
 (16)

Equation (16) reduces to

$$q = -ikp_0 \frac{1}{z} e^{i\ell(\theta - \pi/2)} \int_0^a J_\ell(krr_0/z) r_0 dr_0$$
(17)

for $z \gg z_R$, where $z_R = ka^2/2$ is the Rayleigh distance.

³V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev 2018.

Vortex radiation from unfocused circular piston

Taking the integral leads to an analytical solution:

$$q_{\ell}(r,\theta,z) = -ip_0 \frac{z}{kr^2} e^{i\ell(\theta-\pi/2)} F_{\ell}(kar/z) , \quad z \gg z_R ,$$
(18)

where⁴

$$F_{\ell}(\xi) = \int_{0}^{\xi} J_{\ell}(t)t \, dt = \xi \, \frac{\Gamma(\ell/2+1)}{\Gamma(\ell/2)} \sum_{k=0}^{\infty} \frac{(\ell+2k+1)\Gamma(\ell/2+k)}{\Gamma(\ell/2+2+k)} J_{\ell+2k+1}(\xi) \,.$$
(19)

► Equation (19) equals the following closed-form expressions for 1 ≤ ℓ ≤ 4:

$$F_{1}(\xi) = \frac{\pi}{2} \xi \left[\mathbf{H}_{0}(\xi) J_{1}(\xi) - \mathbf{H}_{1}(\xi) J_{0}(\xi) \right], \qquad \ell = 1 \quad (20a)$$

$$F_{2}(\xi) = 2 - 2J_{0}(\xi) - \xi J_{1}(\xi), \qquad \ell = 2 \quad (20b)$$

$$F_{3}(\xi) = \left[\frac{3\pi}{2} \xi \, \mathbf{H}_{0}(\xi) - 8 \right] J_{1}(\xi) + \left[4\xi - \frac{3\pi}{2} \xi \, \mathbf{H}_{1}(\xi) \right] J_{0}(\xi), \quad \ell = 3 \quad (20c)$$

$$F_{4}(\xi) = 4 - 8J_{1}(\xi)/\xi - 4J_{2}(\xi) - \xi J_{3}(\xi), \qquad \ell = 4 \quad (20d)$$

⁴M. Abramowitz and I. A. Stegun, editors 1972.

Verification of Eq. (18)

▶ The validity of Eq. (18) is assessed by comparison to

$$q(x, y, z) = \mathcal{F}_{xy}^{-1} \left\{ e^{ik_z z} \mathcal{F}_{xy}[q(x, y, 0)] \right\}, \quad k_z = k - \frac{k_x^2 + k_y^2}{2k}.$$
 (21)

Vortex radiation from focused circular piston

To describe spherical focusing at a geometric focal length d, source condition (15) is multiplied by exp(-ikr²/2d):

$$q(r,\theta,0) = p_0 \operatorname{circ}(r/a) e^{i\ell\theta} e^{-ikr^2/2d}, \qquad (22)$$

An analytical solution of Eq. (2) is available in the focal plane z = d:

$$q_{\ell}(r,\theta,d) = -ip_0 \frac{d}{kr^2} e^{ikr^2/2d} e^{i\ell(\theta-\pi/2)} F_{\ell}(kar/d), \qquad (23)$$

where $F_{\ell}(\xi)$ is given by Eq. (19).

Vortex ring radius

Extremizing the solutions in r amounts to solving

$$\frac{d|\xi^{-1}F_{\ell}(\xi)|}{d\xi} = 0\,,$$

where $\xi = kar/z$ (unfocused) and $\xi = kar/d$ (focused). Using Eq. (19) for F_{ℓ} and taking the derivative yields⁵

$$\sum_{k=0}^{\infty} \frac{(\ell+2k+1)\Gamma(\ell/2+k)}{\Gamma(\ell/2+2+k)} \left[\frac{J_{\ell+2k}(\xi) - J_{\ell+2k+2}(\xi)}{2\xi} - \frac{J_{\ell+2k+1}(\xi)}{\xi^2} \right] = 0.$$
(24)

• The roots ξ_{ℓ} of Eq. (24) are fit to a line:

$$\xi_{\ell} = 1.23\ell + 1.49. \tag{25}$$

• Solving $\xi_{\ell} = kar_{\ell}/z$ and $\xi_{\ell} = kar_{\ell}/d$ for r_{ℓ} yields

$$r_{\ell} = \frac{\xi_{\ell} z}{ka}, \quad z \gg z_R,$$

$$= \frac{\xi_{\ell} d}{ka}, \quad z = d.$$
(26a)
(26b)

⁵I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, 4th ed. Item 8.471-2.

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

A simplified diffraction integral

▶ The angular spectrum method is equivalent to the first Rayleigh integral:

$$p(r,\theta,z) = \rho_0 c_0 k \mathcal{F}_{2D}^{-1} \{ \mathcal{F}_{2D} \{ u_z(r,\theta) \} e^{ik_z z} / k_z \},$$
(27)

where

$$\{\mathcal{F}_{2\mathrm{D}}\{f(r,\theta)\} = \hat{f}(k_r,\psi) = \int_0^\infty \int_0^{2\pi} f(r,\theta) e^{-ik_r r \cos(\theta-\psi)} r \, dr \, d\theta \,, \quad (28a)$$

$$\mathcal{F}_{2D}^{-1}\{\hat{f}(k_r,\psi)\} = f(r,\theta) = \int_0^\infty \int_0^{2\pi} \hat{f}(k_r,\psi) e^{ik_r r \cos(\theta-\psi)} k_r \, dk_r \, d\psi \,.$$
(28b)

• In light of F_{ℓ} and Watson's relation⁶

$$J_n(\beta) = \frac{1}{2\pi} \int_{\alpha}^{2\pi + \alpha} e^{i(n\phi - \beta \sin \phi)} d\phi , \qquad (29)$$

Eq. (27) reduces to

$$p/\rho_0 c_0 u_0 = e^{i\ell\theta} \int_0^\infty (k/k_z) F_\ell(k_r a) J_\ell(k_r r) e^{ik_z z} dk_r/k_r.$$
 (30)

⁶G. N. Watson 1944.

A simplified diffraction integral

In terms of the dimensionless parameters

$$P \equiv p/\rho_0 c_0 u_0, \quad R \equiv r/a, \quad Z \equiv z/z_R, \quad K \equiv ka,$$
(31)

where z_R is the Rayleigh distance $ka^2/2$, and where

$$k_z/k = \sqrt{1 - (\zeta/K)^2}, \quad \zeta \equiv k_r a,$$
 (32)

Eq. (30) becomes

$$P = e^{i\ell\theta} \int_0^\infty \frac{F_\ell(\zeta) J_\ell(\zeta R)}{\zeta \sqrt{1 - (\zeta/K)^2}} e^{iK^2 Z \sqrt{1 - (\zeta/K)^2}/2} \, d\zeta \,.$$
(33)

Equation (33) is equivalent to the Rayleigh integral.

Mr. Jackson S. Hallveld

Dr. Randall P. Williams

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

Prefocal shadow zone

▶ Magnitude of solution of Eq. (2) for focused Gaussian vortex source is

$$|q(r,z)| = \sqrt{8\pi} \frac{p_0 z}{kr^2} \left| \chi^{3/2} e^{-\chi} \left[I_{(\ell-1)/2}(\chi) - I_{(\ell+1)/2}(\chi) \right] \right|, \quad (34)$$

$$\chi(r,z) = \frac{\frac{1}{8} (kar/z)^2}{1 - i(ka^2/2z)(1 - z/d)}$$

For moderate values of focusing gain G, Eq. (34) reveals movement of vortex ring out of focal plane z = d as ℓ increases

Focused vortex source condition

- \blacktriangleright To explain this behavior with increasing $\ell,$ appeal to ray theory: $ka \rightarrow \infty$
- In homogeneous media, rays travel in straight lines
- In the vicinity of source, pressure field is

$$p(r, \theta, z) \simeq p_0 f(r) e^{i\phi}, \quad z \simeq 0$$

where f(r) = axisymmetric amplitude distribution in source plane

Phase accounts for focusing, helical wavefronts, and traveling wave motion:

$$\phi(r,\theta,z) = -kr^2/2d + \ell\theta + kz$$

Sunbeams

Wave normal ${\bf n}$ and annular channel radius Δ

• Wave normal in source plane at distance r_0 from origin is

$$\mathbf{n} = \frac{\boldsymbol{\nabla}\phi}{|\boldsymbol{\nabla}\phi|} = \frac{-(r_0/d)\,\mathbf{e}_r + (\ell/kr_0)\,\mathbf{e}_\theta + \mathbf{e}_z}{\sqrt{(r_0/d)^2 + (\ell/kr_0)^2 + 1}}$$

Radius of circle formed by family of rays emanating from r = r₀ in source plane is

$$\Delta(r_0, z) = r_0 \left[(1 - z/d)^2 + (\ell d/kr_0^2)^2 (z/d)^2 \right]^{1/2}$$

Examples of hyperboloids in architecture

(a) Water tower in Ciechanów, Poland.⁷ (b) The Corporation Street Bridge in Manchester, England.⁸ (c) The Essarts-le-Roi water tower, France.⁹

⁷Photograph by Henry Salomé, 2006, distributed under a CC-BY 3.0 license. ⁸Photograph by Kaczorgw, 2006, distributed under a CC-BY 3.0 license. ⁹Photograph by Gerald England, 1999, distributed under a CC-BY 2.0 license.

Pressure field according to ray theory

Pressure field predicted by ray theory:

$$P(\Delta, z) = p_0 f(r_0) \sqrt{A(r_0, 0)/A(r_0, z)}$$
(35)

Area of annular ray channel is

$$A(r_0, z) = A_z(r_0, z) \cos \psi(r_0, z) = 2\pi w \frac{\Delta(r_0, z) |\partial \Delta / \partial r_0|}{\sqrt{1 + (\partial \Delta / \partial z)^2}}$$
(36)

lnserting Eq. (36) into Eq. (35) and calculating $\partial \Delta / \partial r_0$ and $\partial \Delta / \partial z$ yields

$$P(\Delta, z) = p_0 f(r_0) \left[\frac{\cos \psi(r_0, 0) / \cos \psi(r_0, z)}{\left| (1 - z/d)^2 - (\ell d/kr_0^2)^2 (z/d)^2 \right|} \right]^{1/2}$$

Ray pressure field $P(\Delta, z)$ for $f(r) = e^{-r^2/a^2}$

Color plots for the ray field $P(\Delta, z)$ due to a focused Gaussian vortex source.

Caustics

Caustics occur when cross-sectional area vanishes, i.e.,

$$A_{z}(r_{0}, z) = 2\pi r_{0} w \left| (1 - z/d)^{2} - (\ell d/kr_{0}^{2})^{2} (z/d)^{2} \right| = 0$$
(37)

Substitution of roots of Eq. (37) into $\Delta(r_0, z)$ gives caustic coordinates:

$$\Delta_c(z) = \sqrt{(2\ell d/k)(z/d)|1 - z/d|}$$
(38)

▶ Squaring Eq. (38), notating $G = ka^2/2d$, and identifying

$$\Delta_c^2 = x_c^2 + y_c^2 \,, \quad a_c^2 = \ell a^2/4 \, G \,, \quad c_c^2 = d^2/4 \,$$

reveals that prefocal caustic is a spheroid of volume $V_c = \frac{1}{6} \ell \lambda d^2$:

$$\frac{x_c^2 + y_c^2}{a_c^2} + \frac{(z_c - d/2)^2}{c_c^2} = 1, \quad 0 \le z_c \le d$$

Paraxial field q(r, z), ray paths Δ , and caustics Δ_c

Overlays of caustics Δ_c (thick lines) and ray channels Δ (thin lines) on color plots of the amplitude of the paraxial field |q(r, z)| due to a focused Gaussian vortex source. Rays emanating from r > a have been suppressed for visual clarity.

q(r, z), Δ , and Δ_c for $f(r) = \operatorname{circ}(r/a)$

Overlays of caustics Δ_c (thick lines) and ray channels Δ (thin lines) on color plots of the amplitude of the paraxial field |q(r, z)| due to a uniform focused vortex source.

Unfocused limit, $d \to \infty$

▶ For unfocused vortex beams, $d \rightarrow \infty$, for which Δ , Δ_c , and P reduce to

$$\begin{split} \Delta(r_0, z) &= r_0 [1 + (\ell z/kr_0^2)^2]^{1/2} \,, \quad \text{ray channel radius} \\ \Delta_c(z) &= \sqrt{2\ell z/k} \,, \quad \text{caustic radius} \\ P(\Delta, z) &= p_0 f(r_0) \left[\frac{\cos \psi(r_0, 0)/\cos \psi(r_0, z)}{\left|1 - (\ell z/kr_0^2)^2\right|} \right]^{1/2} \end{split}$$

• Caustic surface is a paraboloid, where $z_R = ka^2/2$:

$$\frac{z}{z_R} = \frac{x_c^2 + y_c^2}{\ell a^2} , \quad z \ge 0$$

Unfocused limit, $d \to \infty$, $f(r) = \operatorname{circ}(r/a)$

Overlays of caustics Δ_c (thick lines) and ray channels Δ (thin lines) on color plots of the amplitude of the paraxial field |q(r, z)| due to a uniform unfocused vortex source.

Further reading

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

Motivation to study nonlinear problem

Hypothesis:

- Wavefronts travels farther than they would in the absence of vorticity.
- ▶ The phase evolves more rapidly in *z* direction due to the extra path length.
- Cumulative nonlinear effects in z direction occur over a shortened length scale.

Geometry of Bessel vortex beam

The Bessel vortex beam is simply a cylindrical eigenfunction of the Helmholtz equation:

$$p(r,\theta,z) = p_0 J_\ell(k_r r) e^{i(k_z z + \ell \theta)} .$$
(39)

- The surface of constant phase is $\Phi(z, \theta) = k_z z + \ell \theta$.
- The wave normal is

$$\mathbf{n} = \frac{\nabla\Phi}{|\nabla\Phi|} = \frac{k_z \mathbf{r} \mathbf{e}_z + \ell \mathbf{e}_\theta}{\sqrt{(k_z r)^2 + \ell^2}}.$$
(40)

• The angle with respect to the z axis is $\tan \phi = \ell/k_z r$.

Attempted reduction to 1D

• Over the coordinate $s = z/\cos \phi$, the Burgers equation is

$$\frac{\partial p}{\partial s} - \frac{\delta}{2c_0^2} \frac{\partial^2 p}{\partial \tau^2} = \frac{\beta p}{\rho_0 c_0^3} \frac{\partial p}{\partial \tau}.$$
(41)

The reduced shock-formation distance is

$$\bar{z} = \frac{\cos\phi}{\beta k\epsilon(r)} = \frac{k_z r}{\sqrt{(k_z r)^2 + \ell^2}} \frac{1}{\beta k\epsilon(r)} \,. \tag{42}$$

 \blacktriangleright The Fubini solution over normalized coordinate $\sigma=s/\bar{z}$ is

$$p(\sigma, \theta) = p_0 \sum_{n=1}^{\infty} \frac{2}{n\sigma} J_n(n\sigma) \sin n\omega\tau$$
$$= p_0 \sum_{n=1}^{\infty} B_n(\sigma) \sin n\omega\tau,$$
$$B_1 = 1 + \mathcal{O}(\sigma^2)$$
$$B_2 = \frac{1}{2}\sigma + \mathcal{O}(\sigma^3)$$
$$B_3 = \frac{3}{8}\sigma^2 + \mathcal{O}(\sigma^4)$$
$$B_4 = \frac{1}{3}\sigma^3 + \mathcal{O}(\sigma^5).$$

Numerical solution of Westervelt equation

¹Yuldashev and Khokhlova, Acoustical Physics (2011) ²Lee and Hamilton, JASA (1995)

Numerical solution for Bessel vortex beam

Outline

Introduction

Paraxial approximation

A simplified diffraction integral

Ray theory

The nonlinear problem

Summary

Thank you for listening!

Summary

- Solved Eq. (2) for Gaussian and uniform vortex sources
- Calculated scaling laws for both solutions
- Derived simplified integral solution of Helmholtz equation for pistons
- \blacktriangleright Developed ray theory to explain behavior of field with increasing ℓ
- Showed that shadow zone in prefocal region is a spheroid
- Calculated pressure field from ray theory

Acknowledgments

 Chester M. McKinney Graduate Fellowship in Acoustics at the Applied Research Laboratories

Mr. Chirag Gokani

Prof. Michael Haberman

Prof. Mark Hamilton

References I

- C. Shi et al. (2017). "High-speed acoustic communication by multiplexing orbital angular momentum". P. Natl. Acad. Sci. U.S.A. 114, pp. 7250–7253.
 - B. T. Hefner and P. L. Marston (1999). "An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems". J. Acoust. Soc. Am. 106, pp. 3313–3316.
- M. E. Terzi et al. (2017). "Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness". *Moscow University Physics Bulletin* 72, pp. 61–67.
 - A. Marzo, M. Caleap, and B. W. Drinkwater (2018). "Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles". *Phys. Rev. Lett.* 120, pp. 1–6.
 - X. Jiang et al. (2016). "Convert acoustic resonances to orbital angular momentum". *Phys. Rev. Lett.* 117, pp. 1–5.
 - N. Jiménez, J. -P. Groby, and V. Romero-García (2021). "Spiral sound-diffusing metasurfaces based on holographic vortices". *Sci. Rep.* 11, pp. 1–13.

References II

- Zhang, L. and P. L. Marston (2011). "Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects". *Phys. Rev. E* 84, pp. 1–5.
- M. E. Kelly and C. Shi (2023). "Design and simulation of acoustic vortex wave arrays for long-range underwater communication". *JASA Express Lett.* 3, pp. 1–5.
- S. Guo et al. (2022). "Enhanced Sonothrombolysis Induced by High-Intensity Focused Acoustic Vortex". *Ultrasound Med. Biol.* 48, pp. 1907–1917.
- D. Baresch, J. -L. Thomas, and R. Marchiano (2016). "Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers". *Phys. Rev. Lett.* 116, pp. 1–6.
- C. Zhou et al. (2020). "Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation". J. Appl. Phys. 128, pp. 1–12.
 - V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev (2018). *Vortex Laser Beams.* , Chaps. 2, 6, and 9. CRC Press.
 - M. Abramowitz and I. A. Stegun, editors (1972). *Handbook of Mathematical Functions, 4th edition.*, Item 11.1.1. New York: Dover Publications.

References III

- G. N. Watson (1944). *A Treatise on the Theory of Bessel Functions, 2nd edition.* Sec. 2.2, Eq. (5). Cambridge, UK: Cambridge University Press.
- G. Richard et al. (2020). "Twisting waves increase the visibility of nonlinear behaviour". New J. Phys. 22, pp. 1–8.
- D. Marcuse (1982). *Light Transmission Optics*. 135 West 50th Street, New York, N.Y.: Van Nostrand Reinhold.
- A. D. Pierce (2019). *Acoustics, 3rd edition*. Secs. 8.2 and 8.5. Cham, Switzerland: Springer.

Notation I

Symbol	Description	Dimensions
a	source radius	m
c_0	linear speed of sound	${\sf m}\;{\sf s}^{-1}$
d	focal length	m
G	focusing gain	1
i	complex unit	1
k	wavenumber	m^{-1}
l	orbital number	1
$ ho_0$	ambient mass density	kg m $^{-3}$
p	acoustic pressure	kg m $^{-1}$ s $^{-2}$
q	paraxial pressure	kg m $^{-1}$ s $^{-2}$
R	separation vector ${f R}={f r}-{f r}'$	m
r	position vector	m
v	particle velocity	$m s^{-1}$
ω	angular frequency, $\omega=2\pi f$	s^{-1}
*	complex conjugation	
•	inner product	
:	double inner product	
×	cross product	

Notation II

\otimes	outer product	
∇	gradient	m^{-1}
$\mathbf{\nabla} \cdot$	divergence	m^{-1}
$\mathbf{ abla} imes$	curl	m^{-1}
∇^2	Laplacian	m^{-2}
∇^2	vector Laplacian	m^{-2}
$\langle f(x) \rangle$	average of f over quantity x, $\frac{1}{x} \int f(x) dx$	units of f
$\oint_{\partial \Omega} dA$	integral over closed surface	m^2
$\int_{\Omega} dV$	integral over volume	m^3

The big picture¹⁰

¹⁰D. Marcuse 1982.

Pressure field from ray theory

► Inserting
$$p(\mathbf{x}) = P(\mathbf{x}, \omega) e^{i\omega\tau(\mathbf{x})}$$
 into $\nabla^2 p + k^2 p = 0$ yields¹¹
 $\nabla^2 P + i\omega [2\nabla P \cdot \nabla \tau + P\nabla^2 \tau] - \omega^2 P[(\nabla \tau)^2 - c^{-2}] = 0.$ (8.5.1)

 \blacktriangleright In limit that $\omega \to \infty,$ it is necessary for $({\bf \nabla} \tau)^2 = c^{-2}$ and

$$\boldsymbol{\nabla} \cdot (P^2 \boldsymbol{\nabla} \tau) = 0 \tag{8.5.3b}$$

• Areas $A(\mathbf{x}_0)$ and $A(\mathbf{x})$ define the end caps of a ray tube

▶ Integrating Eq. (8.5.3b) over V and applying Gauss's theorem yields

$$\oint_{\mathcal{S}} (P^2 \nabla \tau) \cdot \mathbf{n} \, dS = 0 \implies P(\mathbf{x}) = P(\mathbf{x}_0) \sqrt{A(\mathbf{x}_0)/A(\mathbf{x})} \,.$$

¹¹Equation numbers refer to those in Acoustics, A. D. Pierce 2019.