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ABSTRACT:
The study of radiation from baffled circular pistons often begins with the Rayleigh integral. The present letter offers

an alternative derivation of the Rayleigh integral by solving the Helmholtz equation for a baffled circular piston in an

infinitely large cylindrical waveguide. While the Rayleigh integral is typically interpreted as a sum of simple

sources, the present derivation shows that the Rayleigh integral can also be cast as a sum of Bessel beams. The

alternative formulation is used to recover the axial pressure radiated by a baffled circular piston and solve the

Helmholtz equation numerically for a vortex beam.VC 2025 Acoustical Society of America.
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I. INTRODUCTION

Radiation of sound from a baffled circular piston is a

canonical problem in acoustics.1 Fields radiated by circular

pistons continue to be studied2 and widely applied.3,4

Analytical solutions were derived recently in the far field

based on the paraxial approximation for radiation from

time-harmonic sources whose velocity in the z direction is

described in cylindrical coordinates ðr; h; zÞ by5

uzðr; h; 0Þ ¼ u0 circðr=aÞ ei‘h; (1)

where circðr=aÞ ¼ 1 for 0 < r=a � 1 and 0 elsewhere, a is

the radius of the piston, and ‘ is the orbital number, which is

nonzero for vortex beams.6,7 With zero amplitude assigned

at r ¼ 0, the ambiguity in phase at r ¼ 0 for ‘ 6¼ 0 is

avoided without affecting the integrations in the following

analysis.

The Rayleigh integral8

pðrÞ ¼ � ikq0c0
2p

ð
S0

uzðr0Þ e
ikjr�r0j

jr� r0j dS0 (2)

is an exact solution of the Helmholtz equation and is often

the starting point for obtaining the time-harmonic pressure p
radiated in an infinite half-space, where k is the wavenum-

ber, q0 is the ambient density of the fluid, c0 is the sound

speed, and S0 is the radiating surface in the source plane

z ¼ 0. Equation (2) is traditionally derived from the

Helmholtz–Kirchhoff integral.8 In the present letter, Eq. (2)

is obtained for the case of a circular piston by considering a

different problem, a piston described by Eq. (1) placed con-

centrically within a pressure-release waveguide of radius b

as shown in Fig. 1. A piston in an infinite baffle is obtained

in the limit as b ! 1, whereupon the sum of modes in the

waveguide becomes an integral in free space over the cylin-

drical eigenfunctions of the Helmholtz equation.

The recovery of Eq. (2) from the modal solution demon-

strates that diffraction theory can be viewed as a limiting case

of modal analysis. Starting with the modal solution draws a

parallel with the solution of the paraxial equation in terms of

Laguerre–Gaussian modes6,9 and provides a natural way of

describing diffraction in cylindrical coordinates. The represen-

tation of Eq. (2) in terms of the cylindrical eigenfunctions of

the Helmholtz equation is amenable to problems with cylindri-

cal features and rotational symmetry, including scattering.10,11

The present work also simplifies the numerical evaluation of

Eq. (2) for sources described by Eq. (1) by reducing the surface

integral to an integral over a single variable.

The modal solution of the Helmholtz equation for

the piston in the waveguide of finite radius b is obtained in

Sec. II. The limit b ! 1 is taken in Sec. III, and Eq. (2) is

recovered in Sec. IV. Two examples that demonstrate the

utility of the present formulation follow in Sec. V.

II. MODAL SOLUTION IN WAVEGUIDE

The general solution of the Helmholtz equation for the

geometry depicted in Fig. 1 is12

pðr; h; zÞ ¼
X1
q¼�1

X1
m¼1

AqmJqðaqmr=bÞeiðqhþbqmzÞ; (3)

where aqm is the mth root of the Bessel function of order q,

and where bqm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðaqm=bÞ2

q
is the z component of the

wave vector. For Eq. (3) to equal Eq. (1) in the source plane,

set q ¼ ‘ and uz ¼ ðikq0c0Þ�1@p=@zjz¼0:
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X1
m¼1

A‘mb‘mJ‘ða‘mr=bÞ ¼ kq0c0u0 circðr=aÞ: (4)

Multiplication of Eq. (4) by rJ‘ða‘nr=bÞ, integration over r
from 0 to b, and use of the orthogonality relation13Ð b
0
J‘ða‘mr=bÞJ‘ða‘nr=bÞr dr ¼ ðb2=2ÞdmnJ2‘þ1ða‘nÞ, yields

A‘nb‘nJ
2
‘þ1ða‘nÞ ¼ 2kq0c0u0a

�2
‘n F‘ða‘na=bÞ (5)

for ‘ > �2, where dmn is the Kronecker delta, and where

F‘ðnÞ ¼
Ð n
0
J‘ðtÞt dt is given by Eqs. (7) and (8) of Ref. 5.

Solving Eq. (5) for A‘n yields the solution of the Helmholtz

equation for the geometry shown in Fig. 1:

pðr; h; zÞ ¼
X1
n¼1

A‘nJ‘ða‘nr=bÞeið‘hþb‘nzÞ; (6)

A‘n ¼ 2q0c0u0
k

a2‘nb‘n

F‘ða‘na=bÞ
J2‘þ1ða‘nÞ

; (7)

b‘n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ða‘n=bÞ2

q
: (8)

III. LIMIT OF INFINITE WAVEGUIDE RADIUS

The limit b ! 1 of Eq. (6) corresponds to the field

radiated into an infinite half-space and is obtained by noting

that the ratio a‘n=b appearing in Eqs. (6)–(8) is vanishingly

small, except for large n, for which13

a‘n ’ pðn� 1=4þ ‘=2Þ; n � 1: (9)

Introducing the dimensionless parameter

f ¼ a

b
pðn� 1=4þ ‘=2Þ (10)

permits Eqs. (7) and (8) to be written for large n as

A‘n ’ q0c0u0
Df
f

F‘ðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=kaÞ2

q ; (11)

b‘n ’ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=kaÞ2

q
; n � 1; (12)

respectively, where Df ¼ pa=b, and where the relation14

J�ðxÞ ’
ffiffiffiffiffi
2

px

r
cosðx� �p=2� p=4Þ ; x � 1 (13)

has been used to obtain the asymptotic form of J‘þ1ða‘nÞ
appearing in Eq. (7):

1

J2‘þ1ða‘nÞ
’ p2

2
ðn� 1=4þ ‘=2Þ ; n � 1: (14)

Inserting Eqs. (10)–(12) into Eq. (6) yields

p ¼ q0c0u0e
i‘h

X1
n¼1

Df
f

F‘ðfÞJ‘ðfr=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=kaÞ2

q eikz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðf=kaÞ2

p
: (15)

In the limit b ! 1, Df becomes df, and the summation

becomes an integral:

p ¼ q0c0u0e
i‘h

ð1
0

F‘ðfÞJ‘ðfr=aÞ
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=kaÞ2

q eikz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðf=kaÞ2

p
df: (16)

Noting from Eqs. (8), (10), and (12) that f ¼ kra andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=kaÞ2

q
¼ kz=k, where kr and kz are the r and z com-

ponents of the wave vector, respectively, allows Eq. (16) to

be expressed as

p ¼ q0c0u0e
i‘hk

ð1
0

F‘ðkraÞJ‘ðkrrÞ e
ikzz

kz

dkr
kr

: (17)

Equation (17) is equivalent to the Rayleigh integral, as

shown in Sec. IV. While the Rayleigh integral is tradition-

ally interpreted as the “sum of the radiations from…individ-

ual simple sources,”12 Equation (17) shows that the

Rayleigh integral can also be viewed as a sum of the eigen-

functions J‘ðkrrÞeið‘hþkzzÞ of the Helmholtz equation. The

eigenfunctions are also known as Bessel beams,10 which are

convenient for analysis because they do not diffract.15

Equation (17) can then be interpreted as the Bessel-beam

decomposition of the field radiated by a source described by

Eq. (1). Studies involving individual Bessel beams may be

generalized using Eq. (17) to fields radiated by circular pis-

tons, although the superposition principle underlying such a

decomposition requires that the wave phenomenon of inter-

est be linear.16

The Bessel-beam decomposition of radiation from a circu-

lar pressure source for ‘ ¼ 0 was previously derived by

King,17 Junger and Feit,18 and Daniel et al.11 Setting ‘ ¼ 0 in

Eq. (17) and identifying kr ¼ k, ikz ¼ l, uz ¼ �ð@/=@zÞjz¼0,

p ¼ ikq0c0/, and u0 ¼ _x recovers Eq. (5) of Ref. 17, where

the convention iðxt� kzÞ used in Ref. 17 explains the minus

sign in the exponential of Eq. (5). Similarly, identifying kr ¼ c
and �ikc0u0 ¼ €W recovers Eq. (5.16) in combination with

Eq. (5.4) of Ref. 18. Meanwhile, denoting kr ¼ k sin b and

kz ¼ k cos b recovers Eq. (3) in combination with Eq. (B-5) of

Ref. 11, where the additional factor of cos b in Eq. (B-5)

FIG. 1. Baffled circular piston of radius a in the plane z ¼ 0 with normal

velocity amplitude u0. The piston is concentric within a pressure-release

cylindrical waveguide of radius b.
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appears because a pressure source is considered in Ref. 11,

whereas a velocity source is considered in Refs. 17 and 18 and

the present work.

Equation (17) is also obtained if the boundary at r ¼ b
is rigid (@p=@rjr¼b ¼ 0), in which case the modal solution

of the Helmholtz equation is

pðr; h; zÞ ¼
X1
n¼1

A0
‘nJ‘ða0‘nr=bÞeið‘hþb0‘nzÞ; (18)

A0
‘n ¼

2q0c0u0
1� ð‘=a0‘nÞ2

k

a02‘nb
0
‘n

F‘ða0‘na=bÞ
J2‘ ða0‘nÞ

; (19)

b0‘n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ða0‘n=bÞ2

q
; (20)

where a0‘n is the nth root of the derivative of J‘, and where

the orthogonality integral leading to Eq. (19) is given by

Ref. 19. The asymptotic form of Eq. (19) for n � 1 is

obtained using the relation20

a0‘n ’ pðn� 3=4þ ‘=2Þ ; n � 1; (21)

which, in combination with Eq. (13), yields

A0
‘n ’

q0c0u0
1� ð‘Df0=pf0Þ2

Df0

f0
F‘ðf0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðf0=kaÞ2
q ; n � 1; (22)

where f0 ¼ pðn� 3=4þ ‘=2Þa=b and Df0 ¼ pa=b. In the

limit b ! 1, Df0 in Eq. (22) becomes df0, Df02 becomes

df02 ¼ 0, and the sum in Eq. (18) becomes an integral.

Equation (16) [and hence Eq. (17)] is recovered by noting

that f0 is an integration variable and can be renamed f.

IV. RECOVERING THE RAYLEIGH INTEGRAL

To recover Eq. (2) from Eq. (17), express J‘ðkrrÞ as21

ð2pÞ�1 Ð 2p
0

ei‘/e�ikrr sin/d/ and change variables to

/ ¼ w� h� p=2:

p ¼ kq0c0
2p

ð2p
0

ð1
0

u0F‘ðkraÞei‘ðw�p=2Þeikrr cosðh�wÞ e
ikzz

kz

dkr
kr

dw :

(23)

Combining Eq. (1) with the integral representations of F‘ and J‘
shows that u0F‘ðkraÞei‘ðw�p=2Þ equals k2rF 2D uzðr; hÞ

� �
=2p,

where uz is given by Eq. (1), reducing Eq. (23) to

p ¼ q0c0kF�1
2D F 2D uzðr; hÞ½ �eikzz=kz
� �

; (24)

where F 2D and F�1
2D are the polar forms of the spatial

Fourier transform pair

F 2D ff g ¼ f̂ ¼
ð2p
0

ð1
0

f ðr; hÞe�ikrr cosðh�wÞr dr dh; (25)

F�1
2D f̂
� �

¼ f ¼ 1

4p2

ð2p
0

ð1
0

f̂ ðkr;wÞeikrr cosðh�wÞkr dkr dw:

(26)

The Cartesian form of Eq. (24) describes propagation using

Fourier acoustics,22 which by the convolution theorem can

be expressed as

p ¼ q0c0kF�1
2D F 2D uzðx; yÞ½ �� � � �F�1

2D eikzz=kz
� �

;

(27)

where the double asterisk in Eq. (27) denotes convolution

over x and y. Equation (27) is simplified by noting that

F�1
2D F 2D½uzðx;yÞ�
� �¼ uzðx;yÞ and F 2D eikr=r

� �¼ i2peikzjzj=

kz,
23 where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

p ¼ � ikq0c0
2p

uzðx; yÞ � � eikr

r
: (28)

By the definition of the convolution operation, Eq. (28) recovers

Eq. (2) expressed in Cartesian coordinates, for which

r ¼ xex þ yey þ zez, r0 ¼ x0ex þ y0ey, and dS0 ¼ dx0 dy0,
where ex, ey, and ez are the Cartesian unit vectors. The recovery
of Eq. (2) from Eq. (3) shows that diffraction theory can be

recovered from a modal solution in an infinitely large enclosure.

V. TWO EXAMPLES

The utility of Eq. (17) is demonstrated by two

examples. In terms of the dimensionless parameters

P ¼ p=q0c0u0, R ¼ r=a, Z ¼ z=zR, and K ¼ ka, where zR is

the Rayleigh distance ka2=2, Eq. (16) becomes

P ¼ ei‘h
ð1
0

F‘ðfÞJ‘ðfRÞ
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=KÞ2

q eiK
2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðf=KÞ2

p
=2 df: (29)

Considered first is the axial pressure radiated by a planar cir-

cular piston obtained by setting R ¼ ‘ ¼ 0, yielding13

PðZÞ ¼
ð1
0

J1ðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf=KÞ2

q eiK
2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðf=KÞ2

p
=2df

¼ �iK I1=2 �iv�ðZÞ½ �K1=2 �ivþðZÞ
� �

; (30)

where I� and K� are the �th-order modified Bessel functions

of the first and second kind, respectively, and where

v6ðZÞ ¼ ðK=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðKZ=2Þ2

q
6KZ=2

� �
: (31)

The relations13,14 I�ðxÞ ¼ i��J�ðixÞ, K�ðixÞ ¼ p½I��ðixÞ
�I�ðixÞ�=ð2 sin �pÞ, J1=2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2x=p

p
sinðxÞ=x, and

J�1=2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2x=p

p
cosðxÞ=x reduce Eq. (30) to

PðZÞ ¼ �2i sin v�ðZÞ½ �eivþðZÞ; (32)
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recovering the axial pressure radiated by a planar circular

piston,8 which is traditionally derived by evaluating Eq. (2)

for jr� r0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ z2

p
and uz ¼ u0 circðr0=aÞ.

Considered next is the numerical evaluation of Eq. (29),

which is compared with the angular spectrum method given

by the Cartesian form of Eq. (24) used to create Fig. 2. The

comparison is performed for ‘ ¼ 1, the orbital number most

commonly used in vortex beam experiments.24 The dashed

red curves representing Eq. (24) were generated by carefully

adjusting the domain and number of transverse discretiza-

tion points to avoid errors due to aliasing.11,25–27 Numerical

integration of Eq. (29), represented by the blue curves in

Fig. 2, avoids the artifacts associated with simulation based

on Fourier acoustics and is relatively easy to implement,

making it advantageous over, but less general than, the eval-

uation of Eq. (24).

While analytical solutions of the paraxial equation are

available in the far field z� ka2 for sources described by Eq.

(1),5 such solutions satisfactorily match the solution of the

Helmholtz equation for ka� 4‘, as discussed in Ref. 9.

Studies involving near-field effects,28,29 high orbital num-

bers,30 and/or vortex fields at low ka can therefore utilize

the numerical evaluation of Eq. (29), which is an exact solu-

tion of the Helmholtz equation.

For sources described by Eq. (1), Eq. (29) can be

obtained directly from Eq. (24) by replacing the Fourier

transforms with ‘th-order Hankel transforms. The advan-

tages of Eq. (29) over Eq. (24) described above arise

because the forward transform of Eq. (1) is evaluated analyt-

ically in Eq. (29) rather than numerically in Eq. (24).

VI. SUMMARY

The Rayleigh integral was derived for planar and vor-

tex beam radiation from baffled circular pistons by con-

sidering a piston in an infinitely large cylindrical

waveguide. While the traditional derivation of the

Rayleigh integral requires knowledge of special func-

tions, Green’s functions, and the principle of

reciprocity,8,31 these concepts were not invoked in the

present derivation. The simplicity came at the expense of

the generality of the present derivation, which was

restricted to circular piston sources. The Rayleigh integral

was recast as a sum of Bessel beams, allowing for linear

acoustic analyses involving individual Bessel beams to be

generalized to radiation from sources described by Eq.

(1). The formulation recovered the axial pressure due to a

planar circular piston and was used to calculate the solu-

tion of the Helmholtz equation for a vortex beam with

‘ ¼ 1. Evaluation of the transformed diffraction integral

in terms of the eigenfunctions of the Helmholtz equation

was shown to avoid the artifacts associated with the

numerical implementation based on Fourier acoustics.
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