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Scattering and diffraction of acoustic waves in three problems with broken symmetry

The effects of asymmetry in acoustic scattering and diffraction phenomena are investigated across
the frequency spectrum, which is characterized by the parameter 𝑘𝑎, where 𝑘 is the wavenumber
and 𝑎 is the characteristic size of the scatterer or source of sound:
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Calculated first is the acoustic radiation force exerted by progressive waves on asymmetric scat-
terers in the Rayleigh limit (𝑘𝑎 ≪ 1). The Born approximation1 in combination with Westervelt’s
far-field integral2 leads to simple analytical expressions for the radiation force. Material asymmetry
contributes to the force on the order of (𝑘𝑎)6. For scatterers with symmetric material properties,
Gor’kov’s 𝑂 [(𝑘𝑎)4] force3 is recovered. The result informs efforts to acoustically transport small
particles over large distances.

Next considered is the effect of low-𝑘𝑎 asymmetric scattering in a piezoelectric composite. Con-
straints due to reciprocity and passivity are derived for the medium’s constitutive relations, which
fully couple continuum mechanics to electrodynamics. Limiting cases recover previous results
that neglect magnetism,4 piezoelectricity,5 and elastodynamics.6 The results guide the design of
acoustic vector sensors.

Attention is finally turned to vortex beams, which are sound beams that break axisymmetry by
an amount characterized by the orbital number ℓ.7 The vortex field radiated by a circular piston
is represented for all 𝑘𝑎 in terms of Bessel beams. Closed-form analytical solutions are derived
in the paraxial approximation (𝑘𝑎 ≫ 1). In the limit that 𝑘𝑎 is infinite, the effects of diffraction
are suppressed, leading to a geometric description of how the field depends on ℓ. In the absence
of orbital motion (ℓ = 0), the exact, paraxial, and ray solutions recover known descriptions of
axisymmetric beams.8 The analytical solutions and scaling laws derived simplify the modeling of
vortex fields, which are used for particle manipulation and acoustic communications.
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