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Acoustic radiation force due to progressive waves Ex. 1. Spherically symmetric nucleated cell
» Time-average force F due to pressure waves p; = p,e'KiT-t) * a. = 0; denoting ¥’ = (a’'/a)3, x"" = (a"' /a)>,
. Ngnllnear c!ue to quadratic terms INn conservation equaﬂong o = 4mz (Fx” + flx - x")+ (1= x)],
* Fis approxmate_d I_oy ca_lculatlng scat_tered wave p; according to o ad[3H2 e 35 )+ 2B (1 )

subwavelength limit of linear acoustic scattering theory d= 73 |Teg2X T 1an X' =X+ anal-x
* Verified by partial wave expansions and Fourier transforms e Force in direction of incident wave is
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Wave equation: o%p = fi(r)cg “p + V- {3f,(r)/[2 + f>(r)]Vp} .

F, is verified by comparison to Eqg. 3;* F| =0

* fi(r) =1—=p()/Bo and f,(r) = 2[p(r) — pol/[2p(r) + pol.’

where B,, p, = ambient compressibility, density; c¢5 = (Bypo) ~?

» Wave eg. solved implicitly by Helmholtz-Kirchhoff (H-K) integral Ex. 2: Cube with antisymmetric properties Properties of cube:
* Three approximations reduce H-K integral to Egs. 1 and 2: * Ay = A4 :40 due to antisymmetry, while 3 10 —2fixs/a,
1. Far field: radius (r) > scatterer size (a) a. =X (fy + frcosO)e,, cosO=e,-e, IS 31_1;2;;{2
2. Born: scattered field (p;) < Incident field (p;) * Forcein direction of Incident wave IS N
3. Long wavelength: a K 1 = 2rn/k = wavelength k g
0 . . . /_1 5 : F| = géﬁl)rcz 2 3f1 T 15(f2 2f1f2)] ~
» Egs. 1and 2 are inserted in Fy = (I )c, ¢ |D.|?(1 — cos)dQ,T Po 3
where (I) = p5(2poco)~ L, Q = solid angle, and e; - e, = cos e FL=—()c;19|D|%e, e, dQ,— 0,0[(ka)®]
* a. = 0 for symmetric scatterers and/or for the static Iimit k — 0 * Verified by Eq. 4, F5;p = 3D Fourier transform
Egs. 1: Monopole, dipole, and coupling polarizabilities [EMEREITdloRORif Eq. 3: Exact radiation force on layered sphere”
35,(r.) scatterer defines N +1 i+ m)'
I the origin O: (n+m+1)(n
= v = A F) =
ﬁ X (An +An+1 + ZAHAnﬂ)anm*aan +cC.C. - COS(@D)]:?JD{ 2+]2f2(15~5)‘;"Z Z.rs}]
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Eq. 2: Directivity ® and scattered wave p. e; and e, are the » Calculated F = 0[(ka)°®] fqr I.{a < 1; verified results analytlcal!y and numerically
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