
We want to integrate ∫∫∫
sphere of radius a
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)
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Since equation (1) contains derivatives that blow up at R = 0, the volume
integral must be evaluated as the sum of two indefinite integrals:

∫∫∫
sphere of radius a

∇2

(
eikR

4πR

)
dV = lim

η→0+

∫ a

η

∫ π

0

∫ 2π

0

∇2

(
eikR

4πR

)
R2 sin θ dφdθ dR
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The first integral on the right-hand-side is∫ a
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R2 sin θ dφ dθ dR = lim
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(ikr − 1)eikr
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= (ika− 1)eika + 1 (first integral)

The second integral on the right-hand-side evaluated from R = 0 to R = 0+, so
the small-argument expansion of the integrand is taken.
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sin θ dφdθ dR (for R→ 0)

In this simplification, the Laplacian of the quantity in parentheses goes as R−3,
which dominates the R2 from the Jacobian, so the R2 vanishes when taking the
small-argument.

Now employing Griffiths equation 102 (towards the end of the relevant pages I
sent you)

∇2 1

R
= −4πδ3(R), (Griffiths 102)

The R integral in the equation (for R → 0) can be changed from
∫ 0+

0
to
∫∞
0

because the integrand is now non-zero from 0 to 0+, and 0 everywhere else. The
second integral on the right-hand-side becomes



1

4π

∫∫∫
all space

−4πδ3(R) dV = −
∫∫∫

all space

δ3(R) dV

= −1 (second integral)

Adding the (first integral) and (second integral) gives the integral of equation
(1):

(ika− 1)eika + 1− 1 = (ika− 1)eika

This matches the result of applying the divergence theorem to equation (1).


