We want to integrate

$$
\begin{equation*}
\iiint_{\text {sphere of radius } a} \nabla^{2}\left(\frac{e^{i k R}}{4 \pi R}\right) \mathrm{d} V \tag{1}
\end{equation*}
$$

Since equation (1) contains derivatives that blow up at $R=0$, the volume integral must be evaluated as the sum of two indefinite integrals:

$$
\begin{aligned}
\iiint_{\text {sphere of radius } a} \nabla^{2}\left(\frac{e^{i k R}}{4 \pi R}\right) \mathrm{d} V= & \lim _{\eta \rightarrow 0^{+}} \int_{\eta}^{a} \int_{0}^{\pi} \int_{0}^{2 \pi} \nabla^{2}\left(\frac{e^{i k R}}{4 \pi R}\right) R^{2} \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} R \\
& +\int_{0}^{0^{+}} \int_{0}^{\pi} \int_{0}^{2 \pi} \nabla^{2}\left(\frac{e^{i k R}}{4 \pi R}\right) R^{2} \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} R
\end{aligned}
$$

The first integral on the right-hand-side is

$$
\begin{aligned}
\int_{\eta}^{a} \int_{0}^{\pi} \int_{0}^{2 \pi} \nabla^{2}\left(\frac{e^{i k R}}{4 \pi R}\right) R^{2} \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} R & =\left.\lim _{\eta \rightarrow 0^{+}}(i k r-1) e^{i k r}\right|_{\eta} ^{a} \\
& =(i k a-1) e^{i k a}+1 \quad \text { (first integral) }
\end{aligned}
$$

The second integral on the right-hand-side evaluated from $R=0$ to $R=0^{+}$, so the small-argument expansion of the integrand is taken.

$$
\begin{aligned}
& \int_{0}^{0^{+}} \int_{0}^{\pi} \int_{0}^{2 \pi} \nabla^{2}\left(\frac{1+i k R-k^{2} R^{2} / 2!-\ldots}{4 \pi R}\right) R^{2} \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} R \\
& \simeq \frac{1}{4 \pi} \int_{0}^{0^{+}} \int_{0}^{\pi} \int_{0}^{2 \pi} \nabla^{2}\left(\frac{1}{R}\right) \sin \theta \mathrm{d} \phi \mathrm{~d} \theta \mathrm{~d} R \quad(\text { for } R \rightarrow 0)
\end{aligned}
$$

In this simplification, the Laplacian of the quantity in parentheses goes as R^{-3}, which dominates the R^{2} from the Jacobian, so the R^{2} vanishes when taking the small-argument.

Now employing Griffiths equation 102 (towards the end of the relevant pages I sent you)

$$
\nabla^{2} \frac{1}{R}=-4 \pi \delta^{3}(\boldsymbol{R})
$$

(Griffiths 102)
The R integral in the equation (for $R \rightarrow 0$) can be changed from $\int_{0}^{0^{+}}$to \int_{0}^{∞} because the integrand is now non-zero from 0 to 0^{+}, and 0 everywhere else. The second integral on the right-hand-side becomes

$$
\begin{aligned}
\frac{1}{4 \pi} \iiint_{\text {all space }}-4 \pi \delta^{3}(\boldsymbol{R}) \mathrm{d} V & =-\iiint_{\text {all space }} \delta^{3}(\boldsymbol{R}) \mathrm{d} V \\
& =-1 \quad \text { (second integral) }
\end{aligned}
$$

Adding the (first integral) and (second integral) gives the integral of equation (1):

$$
(i k a-1) e^{i k a}+1-1=(i k a-1) e^{i k a}
$$

This matches the result of applying the divergence theorem to equation (11).

